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The resistive wall modéRWM) poses a threat to many plasma confinement devices. The continuous
rotation of the wall relative to the plasma makes it appear perfectly conducting, because of the skin
effect, but this is ineffective if the perturbation locks to the wall. This raises the question of whether
a nonuniformly rotating wall is more effective. In this paper we discuss the effect of such
nonuniform wall rotation, in both the toroidal and poloidal directions, on resonant and nonresonant
RWNMs. In the case of toroidal rotation it is shown that at large wall velocity both the resonant and
nonresonant RWMs are stabilized, even though the nonresonant mode rotates with the maximum
wall velocity. In the case of poloidal rotation RWMs do not lock to the wall and have a complicated
behavior at intermediate velocities. However they are again stabilized by large wall velocity.
© 2001 American Institute of Physic§DOI: 10.1063/1.1388035

I. INTRODUCTION In this paper we analyze the effect of nonuniform wall
o rotation, in both the toroidal and poloidal directions, on
Resistive wall modesRWMs) pose a threat to many RwM stability. A poloidally varying wall rotation couples
plasma confinement devices. They are mstabﬂme; that arisgifrerent poloidal harmonicglabeled by poloidal harmonic
because the vessel surrounding the plasma is imperfectly,mperm) of the perturbation and leads to a recurrence re-
conducting. They would not occur if t.he wall were a'perfgctl tion between them. This relation involves the wall time-
conductor, and grow at a rate determined by the vertical fiel Lonstant, the flow velocity and a set of stability indices.

netration time of the vessel. One of the earliest rva- L . !
benetratio e of the vessel. One of the earliest obse aI'hese indices depend on the plasma profiles but are indepen-

tions of a RWM was in a Reversed Field PingFP.! In a q ¢ ) E h i
RFP, the fastest growing RWM is typically nonresonéset, ent of rotation. For our present purposes they are consid-

nowhere is the pitch of the perturbation equal to that of the®'€d as given parameters. _
equilibrium magnetic field This means that the plasma can ~ For @ specific configuratiofi.e., givenA,) the problem
be considered ideally conducting everywhere. This is als¢an readily be solved numerically and we describe some
true for the external current-driven kink mode in a tokamak such solutions. However, we first derive some important ana-
However, an important RWM in advanced tokamaks is thdytic results that illustrate general features of the problem.
so-called pressure-driven external kink, which occurs whehese serve to guide and interpret the numerical results. We
the plasma exceeds the “no-walB limit and has been ob- first investigate the case of toroidal flovw=\V(0)e,, with e,
served in the DIII-D experimerftThis mode is essentially a unit toroidal vector and) the poloidal angle. The basic
toroidal in nature, with the toroidicity and pressure combin-equation is derived in Sec. Il, and the specific case of sinu-
ing to couple neighboring resonant harmonics. It involvesspidal variation is formulated in Sec. Il A. In Sec. IIB we
nonideal effects at the resonances and must be treated Seffvestigate the case of small velocity, while in Secs. 11 C and
rately. _ . 1D we explore the case of large velocity for nonresonant
Bulk rotation of the plasma relative to the wall can result ;|4 rasonant modes. This is followed in Secs. I E. IIF, and

in the plasma “seeing” the wall as perfectly conducting, be-|| 5 . gome numerical results, including the critical flow
cause of the skin effect. However, this stabilizing influence

vanishes if the mode “locks” to the waflThis has led to the velocity required for stabilization of thenonresonant

suggestion that there should be a second, rotatind vyadb- ﬁ;;r]zrllt-drlven andresonarjt pressure-driven modes in a to-

sibly simulated by a suitable configuration of external sen- . B
sors and coifd: then the mode cannot simultaneously lock to Ve then turn to the case of poloidal flow=V(6)e,.

both walls, and may be stabilized. The proposed use of ahis problem is formulated in Sec. Ill and the case of sinu-
flowing lithium wall in a power plarftleads to a configura- Soidal variation is analyzed in Secs. Il A, 1lIB, and Il C.
tion in which the “wall” moves poloidally in opposite direc- Numerical results for poloidal flows are presented in Sec.
tions in the upper and lower halves of the poloidal crossdll D, and the special case of a poloidal “step” flow with
section. Such nonuniform “rotation” should also tend to variation V=Vgsign(d) is discussed in Sec. IlIE. A sum-
stabilize the RWM as it cannot lock to the wall everywhére. mary and conclusions are given in Sec. IV.
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II. TOROIDAL FLOWS

The starting point for our investigation is the linearized

induction equation for the magnetic perturbatibnin the
wall:

db

—r = VX(VXb)+ 2wV2b, (1)

where 7,y is the wall resistivity(assumed uniforpn Decom-
posing the radial component bfas

.|

and taking a cylindrical limit, the radial component of Eg.
(1) gives

E pbmexpim0=2 (
m m

o

> bn expimﬁ) exp(pt+ikz),

m=—o

)

2

—ikV(O)by+ mw— 7

m2
s 77Wbm) expimaé.

)
To connect the interior with the exteriGracuun) region we

integrate Eq(3) across the wal(radiusa, thicknessédyy), to
obtain

> (p+ikV(6))dubmexpimo
m

= (gwla)(Ap—m28y/a)by, expimé, @)
m

whereA/, is the stability index(at the wal) of the mth po-

loidal harmonic, namely the dimensionless discontinuity in.

the logarithmic derivative ob,, across the thin wall:

, a |dby|®
bl dr ®
m a_
Thus, if the wall velocity is
V( 9)=V02 v, expiné, (6)
n
then Eq.(4) gives the difference relation
Pby+iVoY, vabm_n=ALbm— kM?by,, 7)
n

where we have introduced the wall time constany
=ady/ny, normalizedp to 7y, and setVy=kVyry. The
dimensionless velocit§¢0 is the key parameter in the prob-
lem; the small parametet= 6,,/a can help numerical con-
vergence but will be neglected in the analysis that follows.

A. Theoretical analysis—Sinusoidal variation

Now we must choose a functional form fa(6). A
particularly tractable choice i¥(60)=2Vysing. Then Eq.
(7) reduces to

Pb+Vo(bm-1~bmi1)=Arby,. 8
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A useful insight can be obtained by multiplying E®) by
b* and summing ovem to find

pz |bm|2_2 Ar,nlbml2

=Vo| 2 (bybmi1— b 1bm) |. ©)
The right-hand sidérhs) of Eq. (9) is purely imaginary, so
that

SA! byl
R(D=—p 12

[a similar result applies for any anti-symmetki¢ 6)]. This
identity illustrates how differential rotation can lead to stabi-
lization, even thougtV, does not appear explicitly in it. At
V=0 an unstable RWM is associated with a single positive
A’ : indeedR(p)=A/, .2 As V, increases, the coupling be-
tween theb,, given by Eq.(8) will cause theb,,, spectrum to
broaden so thaR(p) is influenced by othed|,. At high m
these are vacuum-like with; ~—2|m|, so that the growth
rate is reduced below its zero velocity value.

Another feature of Eq(8) is that when we reverse the
direction of the flow, \’\/0—>_</0, the Fourier moded,
— b, expima, so that if the originab,, were of the same
sign, those for reversed flow would alternate in sign. How-
ever, this phase change has no effect on the growth rate.

(10

B. Small velocity

We first analyze Eq(8) for the case of smaN70. Start-
ing from theV,=0 solution, when only oné,, is excited
andp,=A/,, the first order perturbation vanish@s agree-

ment with the fact thaV,— —V, has no effect on mode
frequency. By iterating Eq.(8) we find

(P Afn)b=V§ bmizA_,b’“ - bm:b’,”}, (11
mTAm+1 Pm™Am-1
S0 toO(Vy)?,
(Pm— AL+ V| ———+ — 1, }:o. (12)
Am_Am+l Am_Amfl

If m now refers to the most unstable RWM %(5:0, we
have

AL>AL AL, 13
so that
A (14)

where u is positive. Hence, as expectefio reduces the
growth of the most unstable RWM. In the case of the second
most unstable mode, the inequalitids) are replaced by

(15

andu can be of either sign, depending on the relative values
of the three largesA’s.

! ! !
Ame1=An>An_1,
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C. Large velocity, nonresonant modes

We now turn to the case of large rotational velodity,
where we expect a broad spectrumbgf to be excited. We
write b,,=expi¢, so that the difference equatiai®) be-
comes

(P—Am)=Vo[expi(Bms1—

¢m) - expi(d’mfl_ ¢m)]

(16)

This suggests that eitheror someA |, becomes large as
Vo—. Only the former can occur for nonresonant modeSyhich extends to|m|~ V1/3

and in this case we pyt=_2iV,sina. Then, treatingm as a
continuous variable and assuming that/dm varies slowly,
we have

dép(m A7
sin( al ))—sm +— (17
dm 2V,
so that
dé 18
dm—a+g, or m—(a+Q), (18
whereg—0 asVo—®. If a# /2,
iA]
g=—", (19
2V, cosa
and if a= /2,
A’
g=+(i—1) |A’“|. (20)
2V,

For definiteness we choose the root such tha)<0 as
|m|—cc. Then the appropriate forms fdy,, are the right
solution (b,,—0 asm— + ),

m
b= expi (W—a)m—f gdm), (21
and the left solutior{b,,—0 asm— — ),
m
b= expi am+J gdm|. (22

These solutions are valid for ath asVy—2, but must
be matched at an intermediate To do this we return to the
exact difference equation,

; b b,_
2i sing— —0=| 2 1). (23)
VO bm bm
Then, for Iarge\?o, from Egs.(21), (22) and(23), we have
2i sina=—-2exp—ia), (24

so thata= = /2. The mode frequency is therefore

p=*2iV,, (25)

Taylor et al.

An estimate of the dampin®&(p) of this mode can be
obtained from the identity derived earlier, EG0),

SAp byl

RP) =<7
(p) Elbmlz

From Egs.(20), (21) and(22) the spectrum at largm is

) 4|m|3/2
|b|*=expg — =
m 3 (e ’

(26)

(27)

. Consequently at Iargé/o,
R(p) becomes mdependent of the spectrum at srrall
and, replacing sums by integrals, tends to

— f52mexp —4m>%3vi?dm

R(p)= N (28)
15 exp(—4m*33vi2dm
ie.,
(9Vo/2)r (413) - s
R(p)=~ g = Lo, (29)
Finally, therefore, at larg¥,,
p=*2iV,—1.00V". (30)

Physically this solution corresponds to a stable mode that
travels toroidally at the maximum wall spe¢gpresumably
because mode locking is most effective wh¥i@) is sta-
tionary in 6]. The frequency, damping and structure of this
mode do not depend ofi;,; consequently it is ainiversal
mode, independent of loym| features and therefore of the
plasma profile!

D. Large velocity, resonant modes

In advanced tokamaks a performance limiting instability
is the RWM that arises from the pressure-driven external
kink.? The mode is essentially toroidal, with resonant side-
bands driven by toroidicity an@. This does not lend itself
readily to analytic investigation. However, a cylindrical
model of this mode can be constructed, as demonstrated by
Finn® who modeled the toroidal mode by a cylindrical equi-
librium that was ideal unstable in the absence of a wall, but
had a resonance in the plasmaratrg. It was shown in
Refs. 9 and 10 that this construction leads to the relation

1_5Aé(rw))
Aj(rw)— €

between theplasmaresponse at the resonant layag(rs),

and thewall responseAj(ry). (The subscript 2 indicates
that we are taking the internal plasma resonance to be asso-
ciated withm=2.) The parametee>0 represents the degree

of ideal instability in the absence of a wall,(r\)—0, and

6>0 represents the degree of tearing stability in the presence
of an ideal wall,A5(r ) — .

Aé(rs)=< (31)

and the phase change between adjacent Fourier harmonics is With this qualitative model, the resonant RWM can be
/2 for both positive and negativa. (Note that these results investigated by solving Eq(31) for the wall response
are independent of whicim we choose for matching the left Aj(ry,) when the plasma resonant layer respofgér) is

and right solutions.

given. We take this layer response to be the “visco-resistive”
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form A(rg) =pry /7w (Wherer is a hybrid layer timgbe-
lieved to be relevant for many tokamaksror simplicity we
also taker,=ry. Finally, then, we have for thd; to be
used in Eq(8):

1+ep
S+p )’

Aj= (32

Note that, unlike the earlier discussiof, now explicitly
depends omp.

The effect of differential wall rotation on resonant
RWMs is quite different from the effect in the nonresonant

case. This is because the resonajt-o asp— —§. This
leads to a narrow spectrum bf, despite the coupling intro-
duced by wall rotation.

Returning to Eq(17) we have

[ do 1
sinf—|=——(p—A4}), (33
dm/  2iv,
so at Iargé:/O, for all A/, exceptm=2,
d¢ 1 , 1 ,
—=——(p~Ay) or 1= ——(p—Ay). (34)
dm  2jv, 2iV,
Therefore, fom<2,
- .
bn=exg — mp—f Ardm||, (35
12V
and form>2,
_ L .
bn=expg iTm— — mp—f ALdm]||. (36)
_ 2V,
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-6
0

FIG. 1. The effect of a toroidal siGrdependent flow on a nonresonant
RWAM. (i) Solid line, real eigenvalup. (i) Broken line, Reg). (iii) Dotted
line, Im(p).

E. Numerical solution of the toroidal flow case

Equation(8) was solved numerically both by matrix in-
version and using a “shooting” method. A model is needed
for the set ofA[, values. Of course, for a specific situation
one would determine the equilibrium profile and numerically
calculate these quantities. However, for an initial investiga-
tion this is not necessary, and we can assign them plausible
values. The unstable nonresonant RWM was chosen to be
m=3 and represented by settifd, to +2. In a cylindrical
model theA', ; are universaldue to the “top hat” nature of
the eigenfunctiopnand for all equilibria,

1= (39

As before, we have to match these two solutions, but

now we mustdo so atm=2. As Vo—x, Eq. (35 gives
bmt1/bm— —1 for m<2 and Eq.(36) gives b,,_;/by,

—+1 for m>2, so matching these ah=2 leads to the
dispersion relation

(p—A3)=—2V,, (37
ie.,
1+ep) %
P~ |~ Vo (38)

Therefore, as expected, Wh&a*ﬂ)@, p— — 6. We are only

interested in RWMs if the system would be stable with a
ideal wall, i.e., if6>0, hence in cases of interest the resonam(i e

RWM is stable at large wall velocityEssentially this stabi-

lization comes about because in this case the skin effect r

ally does make the wall appear idealhe Fourier spectrum
is peaked am=2 and form< 2 adjacent harmonids,, have

the same phase, whereas fior-2 they have opposite phase.

As remarked earlier, this behavior is reverse if—— V.
Note that this resonant mode doest lock to the wall and

whereqj, is the wall value of the safety factor which we take
to beg,=3. The remaining\/, were set to the vacuum re-
sponse, i.e.Aj=—2, Al =—2|m|.

F. Nonresonant modes

The results of a typical numerical calculation are shown
in Fig. 1. (In all figures the solid lines denote a purely real
eigenvaluep and the broken and dotted lines denote the real
and imaginary parts of a complex eigenvajuecan be seen
that the growth rate of the most unstable RWpI=2 at

V,=0) decreases with velocity, in fact in close agreement

Mwith Eq. (14). For this mode the eigenvalye remains real

the mode does not spin up or lock to the yvalhd it

JHecomes stable at,=2.6.

Figure 1 also shows two other modes, which are stable at

V,=0. These coalesce &,=0.33 and begin to “spin up,”
as indicated by comple, eventually approaching the maxi-

mum wall velocity[Im(p)~2iV,, in accord with Eq.(30)].
Note that this mode has the smallest damping rateVipr

that it is again universal, in the sense that it is independent of 3.9, i.e., at larg&/, the least damped modethe universal

all A;, except the resonari;, .

nonresonant mode described in Sec. Il C.
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ar 2i dd
3- Un= " oy 100G
2> =0, n even, (43)
1 Tyell . ) ) .
ST and introduces coupling between all Fourier harmomigs
P O S~ as well as requiring singularities &t 0,7r. Accordingly, we
-1 ;.,_;/“-ﬁ\\ consider first the much simpler case of sinusoidal variation
-2k = T V= —2\70 sin# (which could be approximately realized by a
e Tl blanket fed by a suitable array of injection and extraction
-3+ - . .
points around the periphery of the tokamak
~% 2 s 8

A. Analysis of poloidal flows—a “standard model”

FIG. 2. The effect of a toroidal sifdependent flow on a resonant RWM. For a poI0|daI flow with a sinusoidal variation, E(GfLZ)
(i) Solid line, real eigenvalue. (ii) Broken line, Reg). (iii) Dotted line, ~ reduces to

Im(p) , )
(p_Am)bm+mVO(bm+1_bm—1):0- (44)

Although this is similar to the equation for toroidal flq&q.
(8)], the two cases are significantly different. With toroidal
As mentioned earlier, an important mode in a tokamak islow the wall velocity is constant along the direction of mo-
the pressure-driven external kink RWM, which is essentiallytion, whereas with poloidal flow the wall velocity changes,
toroidal and involves a resonant plasma layer. In Sec. Il D weind indeed reverses, along the direction of motion. Conse-
described a simple cylindrical model that mimics this toroi- quently we expect “wall locking” to be more strongly inhib-
dal mode and leads to the form fAr(ry), ited with poloidal flows.
1+ep A remarkable feature of Eq44) is that positive and
Aéz( 570 ) (40 negative harmonicém-number$ are decoupled from each
P other, ando,=0 except for then=0 mode(which is unaf-
For numerical work we take=0.1 and §=1.0, keeping fected by rotation By exploiting these features we can ob-
other parameters as in the nonresonant calculation. The réain anexactsolution for a particular set af;,. This special
sults are shown in Fig. 2. A\@/Ozo there is an unstablm solution then forms the basis for some important general

=3 RWM with p=2, and an unstablen=2 mode withp results.

G. Resonant modes

~0.6, arising from Eq(40). We see that a¥, increases The exact solution is obtained by takidg,= —2|m| for
these two modes coales¢at \7on.8) to give modes with all m. Then
complex eigenvalues. These are eventually stabilize‘fdoat (p+2m)b,+ mVo(bm+l—bm,l)=0. (45

~2.8. There is also a stable=2 mode, withp~—1.6 at

- . ) N Multiplying this by expimé, and summing over positive
Vy=0. For this mode remains real a¥, increases and for

Y gives
Vo=4 it becomes the least damped mode. Its eigenvalue 5
ﬁsgmptotes tgp=— 6 in accord with the analysis in Sec. (p—Zi ﬁ>b(a)—2f/0%(b(6)sina)=0, (46)

whereb(6)=2b,,expimé. Then
I1l. POLOIDAL FLOWS
. . . . 1 ip (¢ de
The starting point for the analysis of the effect of poloi- b()=——expl —— | ——}.
dal wall rotation is again Eq1) where the flow is now (1—iVysing) 2 ) (1-iVysing)

=V(6)e,. For a general poloidal flow, (47
Sinceb(#) must be periodic, we obtain the exact eigenvalue,
V(6)=V,>, v,expiné, (41) .
p=—2m(1+V3)¥2% m=positive integer, (48)
we obtain with the corresponding eigenfunction
PPt imUe vobn-n=Apbn, (42) o0 1 tandr2—iVo—i(1+v2)v2| "
(1—iVosing) | tand2—iVo+i(1+V3)12)

where nowV,=V,7,/a. Note that the toroidal wave num- (49)
ber does not appear explicitly in EGL2). As noted earlier, a

flowing lithium blanket could be modeled as a counter rotat-We see that for this “standard model,” all RWMs are stable
ing flow in upper and lower halves of the poloidal cross-and the damping rate increases with the wall velocity, as-
section[“step flow” V=V, sign(d)]. This would correspond ymptotically approaching—2mV,. All eigenvalues are

to coefficients purely real so that, as expected, there is no “wall locking.”
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Although this model 4/ =—2|m|) is valuable as a

benchmark for numerical computations it is clearly not rep-

resentative of more general situations—particularly as in it

all RWMs are stable for any wall velocity! However, this

restricted model forms the basis for an important extension

to RWMs with arbitrary values ok, and large wall velocity.

B. Analysis of poloidal flows—a general large v

model

The basis for extending the restricted model to more
general cases is the following observation. If we introduce

p= p/\70 the fundamental equation becomes

Ap,
p_ - bm+ m(bm+1_ bm—l)zo- (50)

Vo

This suggests that at Iar%,Ar’n is unimportant unless it is
itself large. However, except for the resonant modlg, is
large only at largem—where it always has the standard
value —2|m|. Accordingly we expect that, irrespective of the
A/ for smallm (i.e., irrespective of the plasma profjilthe
eigenvalues of Eq(50) will always tend asymptotically to

those of the standard model ®g increases. This is demon-
strated for a single nonstandatd,, in detail below.

Consider a model in which only onky, differs from the
standard value, i.eA/,=—2|m| for m#| and A{ is arbi-
trary. Then, if we carry out the same steps as in solving th
standard model, we obtain in place of E46),

d
Zﬁ(vosin 0+i)b(6)—pb(6)

. de .
=— (A +2l)expil 0 %zb(a)exp(—lle). (52
Putting (Vo sin6+i)=r(6), r(6)b(6)=h(6) and
do h(o) )
Er(—a)exq—ll 0)=H, (52)
Eqg. (51) can be written as
oh ph(o) (A/+21)
@_Er(e):_ 5 exp(il B)H. (53
Therefore
h(a)exr< —gR(0)>
Al +2l
_ %fﬁ exp(—gR(H’)Hla’)dﬁ’ H+1,
(54
where
(e de’
Ro- | %

andh is normalized so that the integration constant is unity.

Introducing

Resistive wall modes and nonuniform wall rotation 4067
P .
.= jg ex;{—ER(é))ﬂle de,
. 1 fﬁ pR i de
z—z ex E (0)—| 0 W’
and
3= ! ! pR ile|d
3—5 r(—a)ex E (g)—ile|do
0 p
xf ex —ER(G’)HIG’ de’, (56)
Egs.(52) and(54) give
(A +21)
1+ —5—la|H=1,. (57
Sinceh(8) must be periodic, Eq.54) also gives
p (A/+21)
ex;{—ER(Zﬂ') _1:_Tll , (58
ie.,
i —(A/+21)14l
ox DA7T - (|’ )12. (59)
(1+V3)2 (2+(A7+2D)13)

This equation gives the RWM frequengyin a form that
involves only standard integrals. Its immediate importance is

%hat it can be showiisee the Appendixthat the expression

on the right hand side of Eq59) tends to zero a¥,— .
Thus, irrespective oA the eigenvaluep approach those of
the standard model as the rotation speed increases.

C. Marginal stability and p=0

An indication of the complicated behavior of RWMs in
the intermediate region between small rotation velocity
(where p,~A]) and large rotation velocitfwhere p,,

——2m(1+V2)¥?] can be obtained by examining the case
p=0. We consider a model in which a few, smial] param-

etersA;,, may be arbitrary and the remainder have their
standard values-2|m| (i.e., A],= —2|m| for m=my). (This
is the typical situation for model tokamak plasmaBhen,

for p=0 andm=m,,

2by+Vo(bs1—bpm-1)=0, (60)
so thatb,,=\™ with
1 1/2 1
A=| 1+ A—2 -—. (61
V§ Vo

(ForVy>0, N<1 so thatb,,—0 asm—.) We now match
this solution to that obtained by repeated application of the
difference equation,

AL
- Hbm"—vo(bm%—l_bm—l)zol (62

Downloaded 31 Jan 2002 to 128.59.51.36. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/pop/popcr.jsp



4068 Phys. Plasmas, Vol. 8, No. 9, September 2001 Taylor et al.

(@ If A;<0, A,<0 (RegionD), Eq. (67) has no valid
roots. This is in accord with the fact that all RWMs are
stable for any velocity, so there is no marginal stability

A boundary.

c (b) If Aj<0, A5>0, or A;>0, A;<0 (RegionsC,E),
Eq. (67) has one valid root. In this region there is one
stable and one unstable eigenvalu&/gt 0. However,

L . I_/'ﬁ( as we will see in Sec. IlI D, the poifi=0 need not

) ) 2 4 p, correspond to the unstable eigenvalue becoming stable.

Instead it may correspond to the stable one becoming

D E unstable! Consequentlp=0 is not necessarily the
marginal stability boundary in this regime.

(c) If A;>0, A;>0, there are three subregions to con-
sider.

10
A,

5}

(i) In regionA,, with A;>f(Aj) where
(Aj—2)

2A;7
and regionA, with AJ<f(A]) andA;<2, Eq.(67)
has no valid roots. This is despite the fact that there
FIG. 3. The different regimes for two nonstandax¢s. are two unstable eigenvalues \Ta&: 0 that become

stable as/,— . This is an indication that the eigen-
values become complex before stabilization.

starting fromb,=0. For example, in the simplest case that(il)  InregionB, with A;<f(A;) andA;>2, Eq.(67) has

f(Ap)= (68)

-15 I

only A} differs from its standard value, we use E§2) to two real roots. In this case the larger root may repre-
obtainb, /b, and match it tb,,=\™, i.e., sent the marginal stability boundary but, as (in
above, this is not always the case.
Al b, 1\ 1 . - o
—=—=A=| 1+ =l T (63 We now examine the behavior in each of these regions in
Vo b1 Vel Vo detail.
Thus, if A1>0, the critical veIocity\A/C at whichp=0 is D. Numerical solution with poloidal flow
\72:(1+A1)z_ 1 (64) We have investigated each of the distinct regions identi-
< .

fied in the previous section by numerical computation, again
This is in accord with the fact that there is a single unstableusing matrix inversion and a shooting code. In both methods,
mode atV,=0 that becomes stable @=V,, andV, is the  particularly at highV,, great care must be taken to retain an
true stability boundary(If A;<O0 there is no real velocity for appropriate number db,,. A summary of the results is as

which p=0 as all modes are stable for &f}.) follows.
’ T_he S|tuat|on is more complicated when more than ONQa) In regionD (A,<0,A}<0) all modes are stable at all
A, differs from its standard value. For example, whef velocities. There are two typical ways in which the

andA; are nonstandard we have, for=1,

Al b
—== (65)
Vo by
and form=2,
A, by b
= (66)
2V, b, by
so that matchindp; /b, to b,,=\™ gives for the critical ve-
locity
A, V3 “
-2, 0 _ 12_
5 +Ai (1+V3)Y2—1. (67)

. P L FIG. 4. The effect of poloidal sif-dependent flow,A;=—1.0, A}
As a function ofA;,A; there are now several distinct — _4 0_(i) solid line, real eigenvalup. (i) Broken line, Reg). (iii ) Dotted

regimes, as shown in Fig. 3. line, Im(p).
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FIG. 5. The effect of poloidal sif-dependent flow,A;=-3.0, A}
=—4.0.(i) Solid line, real eigenvalup. (ii) Broken line, Reg). (iii) Dotted
line, Im(p).

Resistive wall modes and nonuniform wall rotation 4069
2 -
e
p
o+ ._
D
e T
-2 ! l ! l J
0 0.2 0.4 0.6 0.8 1.0

FIG. 7. The effect of poloidal sifi-dependent flowA;=—1.0, A;=0.5.
(i) Solid line, real eigenvalug. (ii) Broken line, Reg). (iii) Dotted line,
Im(p).

eigenvalues develop a4 increases. They may remain

real for allV,, tending asymptotically to-2mV,, or

two eigenvalues may coalesce and give rise to a pair of
stable complex eigenvalues. In Fig. Aj=—1A)
=—4) the uppermost eigenvalue emanating from
=—1 atVy=0 remains real for alV, whereas the
next eigenvalue, emanating from=—4, coalesces
with a third eigenvalue and gives rise to a pair of
stable, complex eigenvalues. In Fig. A= —3,A,
=—4) two stable eigenvalues also coalesce and give
rise to a complex pair, but later these revert to two real
eigenvalues and asymptotically approacBmV,.

In regionsC (A;<0A/;>0) andE (A;>0A,<0) q
there is one unstable and one stable eigenvalug,at C
=0 and two typical ways for these eigenvalues to be-
have asV, increases. In Fig. 6/;=—0.1A,=0.5)

the stable eigenvalue is first drivemstableas V, in-
creases. Subsequently it coalesces with the other un-
stable eigenvalue to give rise to unstable complex ei-
genvalues. These are eventually stabilized as the
velocity increases further. Clearly the poipt=0 at

(©

V=0.2 does not define the stability boundary in this
case. In Fig. 7 A;=—1.0A,=0.5) the unstable ei-
genvalue is first stabilized a¥/,=0.4 and only at
higher\70 do the eigenvalues coalesce and give rise to
stable complex eigenvalues. In this case0 doesde-
fine the marginal stability boundary.

In regionsA,; andA, there are two unstable eigenval-
ues atV,=0 and their typical behavior is illustrated in
Fig. 8 (A;=2.0A,=0.5). In this case the unstable ei-
genvalues first coalesce ¥g increases and give rise to
unstable complex eigenvalues. These are subsequently

stabilized asV, increases beyone1.8. There is no
point p=0, in accord with the analysis of Sec. Il C.

In regionB there are again two unstable eigenvalues at
V=0, and two typical ways in which they develop. In
Fig. 9 (A;=4.2A,=0.5) the lower eigenvalue is first
stabilized atV,=1.2, but then goesnstableagain as
\70 increases further! It then coalesces with the higher
eigenvalue to give unstable complex eigenvalues that
eventually stabilize at a still higher velocity. There are
two pointsp=0, in accord with the analysis of Sec.
[l C, but neither defines the marginal stability bound-
ary. In Fig. 10 A;=5.0A,=0.5) both eigenvalues are

FIG. 6. The effect of poloidal sif-dependent flowA;=—0.1, A;=0.5.

(i) Solid line, real eigenvalug. (i) Broken line, Reg). (iii) Dotted line,

Im(p).

FIG. 8. The effect of poloidal sif-dependent flowA;=2.0, A;=0.5.
(i) Solid line, real eigenvalug. (ii) Broken line, Reg). (iii) Dotted line,
Im(p).
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Three Full step
Harrr,mnic flow

VO crit

FIG. 9. The effect of poloidal sift dependent flowA;=4.2, A;=0.5. (i)

Solid line, real eigenvalup. (i) Broken line, Reg). (iii) Dotted line, Img). FIG. 11. Critical velocity needed to stabilize the nonresonant R{gMoi-

dal “step” flow).

stabilized before they coalesce to give complex eigen-

values. In this case the higher popit=0 doesdefine  =—2|m|.] The solid line shows the critical velocity with step

the marginal stability boundary. flow variation, calculated retaining all Fourier harmonics

. . . —40<m<40. The broken line shows a similar calculation

It is clear from these examples that with nonuniform ,hen only three harmonias=2,3,4 are retained, as in Ref.
poloidal wall rotation the behavior of RWMs is g This “three-harmonic” approximation leads to a cubic

complicated—though they are always stabilized at a Sum'equation for the eigenvalye as a function ofA}:
ciently high velocity. Modes with complex frequently 3

arise, but they are not associated with simple wall-locking, as ~ F(p)=p3+ (12— A})p?+ (32— 12A5+18V3)p

was the case with toroidal rotation. .

E. Step fiow +(96V2—3224)=0. (69)
The work so far described concerns the effect of wallBY Mapping the half plane Rpj<0 on to the complex

rotation with sinusoidal variation in velocity. We have also P'ane it can be shown that solutions of E9) correspond

carried out a limited investigation of a “step flow” variation t© Stable modes provided
of poloidal veIocity,V=\_/0 sign(ﬁ), such as might represent VS>AQ/3 (70)
a simple form of a flowing lithium wall blanket.

As noted earlier, for a step flow variation of velocity all and
Fourier harmonic®,, are directly coupled. In particular, the
positive and negativen numbers are not decoupled as they ¢ 2((A3)°—12A3+32)
are for sinusoidal variation. The effect of this coupling be- 0 3A;—-20 '

tween distant Fourier modes can be seen in Fig. 11. This , .
shows the critical velocity required for stability as a func- SO the larger of Eq(70) and Eq.(71) defines the critical

tion of A} when all otherA’, are fixed.[In Fig. 11, A} velocity. [Only when the critical velocity is given by E¢70)

——2, AL,=—20./(qa¥1), g.=3 and all other A’, does iF al_so corrgspond m=0] _
- It is interesting that in Fig. 11 the “three harmonic”

approximation agrees well with the full calculation when
A3=<5, but differs markedly for largeA;. Indeed in the
three harmonic approximation the critical velocity~ as
A3—20/3 whereas the full calculation remains finite. An-
other interesting feature is that the point at which the critical
velocity ceases to be given hy=0 in the full step flow
calculation is also ah3=20/3.

(71

IV. SUMMARY AND CONCLUSIONS

) It is well known that Resistive Wall Modes are influ-

| | | | | enced by rotation of the wall relative to the plasma—because
5 the skin effect makes the wall appear as an ideally conduct-

ing boundary. However, this effect disappears for perturba-

FIG. 10. The effect of poloidal sif-dependent flowA]=5.0, A;=05.()  tions that lock to the wall rather than to the plastria. this

Solid line, real eigenvalup. (i) Broken line, Ref). (iii ) Dotted line, Imp). work we have examined the effect obnuniformwall rota-
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tion on RWMs in a torus. Nonuniform rotation should inhibit that of the standard model irrespective of thie for smallm
locking to the wall and may therefore provide stabilization ofand therefore(in most casesindependently of the plasma

RWMs. _ . o _ profile. Thus the standard model respilt= —2m+/1+V3 is
For a poloidally varying rotation, in either the toroidal or ynjversal for large poloidal rotation. However, the behavior

poloidal directions, the growth of RWMs is given as the of RWMs at intermediate velocities, between small rotation
eigenvaluep of a difference equation that depends only onyhere pn~Al, and large rotation where p,~

the wall penetration timer,, the wall velocityV(6) and a
set of indicesA/,. These indices depend on the plasma pro
file but are independent of wall rotation. Thus the problem i

separated into two partgi) the determination of stability Considering the behavior of RWMs as a function/df

indices from the equilibrium profile andi) the determina- 5,4 A with otherA,, fixed, we found several regimes illus-
tion of the effect of rotation when the indices are given. Weyoa4'in Figs. 4—10. In the simplest situation the two modes

have considered only problefii) here. corresponding ta\; and A} at Vo=0 are stabilized a¥,

For a poloidally varying rotation in the toroidal direction increases and the eigenval are asvmptotic to the uni-
we indeed find that rotation always reduces the growth rate 9 YR ymp

— ,
of the most unstable mode below its zero velocity value. AiVersal values-2my1+Vg. However, in many cases these

high velocity, with a sinusoidal variation, we have shownModes coalesce and give rise to complex frequency eigen-

analytically that RWMs tend to a universal damped nonresovalues either before or after one or both modes are stabilized.

nant mode withp~ 2iV,— V3. This mode is peaked in po- For the parameter range examingd3<A;<5, —4<4,;

loidal angle and rotates toroidally at the maximum wall ve-ﬁlo-ﬁtcoa;f?SPe?fehqcﬁurs Iin t?e trﬁgiop:@.\zosla Eventtl-
locity V,. It is independent of the parametess,, and afly a sutiiciently nign veloctly the eigenvaiues mus: ap-

therefore of the plasma profile. There may also be a dampe%roaCh the star_ldard values, though we have sho_w_n thls_nu-
-merically only in a few cases because of the difficulty in

resonant mode at high velocity that does not rotate. This is ) uti for larab
also universal in that it is independent of alf, except the comlputlr&%_go utlonsh or arg_le’o. ¢ the effect of sinusoidal
resonant one. Its damping rate is determined, through the n addition to the studies of the efiect of sinusoida

resonantA!,, by the plasma response in the resonantvanation in wall velocity we have carried out a limited ex-

layer—as explained in Sec. II D. zin\1/|naf[|on00f_ the ”effelct _?n RWr']VIS of_ahtste_p V?”?;'M}.
Numerically, for a set of tokamak-like indice4/,, =Vosign(¢) in wall velocity, such as might arise in the sim-

i lest form of a flowing lithium blanket. This step flow intro-
which correspond to a singlen=3 unstable mode aY¥, P g P

—0 find that thi bl de d hduces additional long range coupling between poloidal Fou-
=0, we find that this unstable mode does not rotate as e noges. In a study of the critical velocity required for

velocity increases: its growth rate diminishes and it is Stab"stability as a function oA}, with otherA’. fixed, we found

lized atVo=2.6. Its damping rate then increases withand  that these additional couplings introduce little change when
atVy~4.0 it ceases to be the least stable mode.\rgr4  A<5. Indeed the results foh;<5 were well reproduced
the least stable mode is the complex frequency, wall lockedyy a simple model retaining only three harmonics. However,
universal mode described above, wiihasymptotic to 2\70 for Aj=5 the computations with a full interaction between
— VB asVy—co. harmonics—40<m<40 differed dramatically from the three

For a set of parameters representing a system with aRarmonic modekin which the critical velocity—c when
unstable resonanh=2 mode as well as an unstable non- 43— 20/3.

resonanim=3 mode al\70=0, we find a§/0 increases these

two modes coalescg to form complex frequency mOdeiCKNOWLEDGMENTS

which are stabilized &¥,=2.8. As in the previous numerical . o

example, their damping then increases v\ﬁt@ until at \‘/0 This work is jointly funded by UK DTl and EURATOM
~4.0 they also cease to be the least stable modes and &89 by the U.S. Department of Energy.

replaced by the universal resonant mode.

The case of nonuniform wall rotation in the poloidal
direction differs considerably from that of toroidal rotation.
The wall velocity is no longer constant along the direction of
motion so an element of plasma experiences a varying, and |n this appendix we consider the laryg behavior of the
indeed reversing, wall motion. Consequently wall locking isintegralsl ,, I,, |5 required to determine the eigenvalpe
further inhibited and more complicated mode interactions ocywhen all A} have their standard values except for=1.
cur. As we will see, the correction to the standard eigenvalue is

For a sinusoidal variation of wall velocity there is an g4 whenV, is large, so we may evaluatg, |,, andl s at
exact “standard model” solution for a particular set &f, p= —2m\/1+—\7§.

(A;,=—2|m| as is usual for largém|). The model is atypical . .

. . . i) The integrall
in that all RWMs are stable for any velocity, but it forms the (i) The integrall,
basis for the study of more interesting situations. In particu-
lar, at large wall velocity the growth rate of RWMs tends to

—2my/1+ V3, is complicated. This is indicated both analyti-
‘cally by an analysis of the=0 situation and by numerical
Scomputation.

APPENDIX: BEHAVIOR OF THE [, I,, I3 INTEGRALS
AT LARGE FLOW

l,= 35 doF (e’ (A1)
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where Finally, for I3,
e /Z)JHdalr 0) | ! fﬁ ! pR 0)—il o
Xp — = - — —
(pr2) | doirt =27 P rig) A RO

~ [~ A [ ~, m 0
(VO+ 1+Vg) tam9/2—|(V0— 1+Vg) Xdaf eXF(—gR(G’)-HIﬁ’)déV, (Ag)
(Vo— V1—V3) tanbi2—i(Vo+ 1+ V3)

F

we first integrate by parts to give

(A2) 1 |

" 1

For largeVy, introducingt=tané/2, we can writel ; as l3=———+ -

m mVO 2’7TmV0

. = [ t+il2Vo| (t—i)'"* _ .
|1=—2(2v0)2mf o) ! _) dt. (A3) i doe " o
—=\ =21V, (t+iD)T + - el?F(9')do’. (AL0)
27mV, F(O) J-m

This can be evaluated conveniently by contour integration_l_husl is dominated by the term involvint so that the
around the lower half-plane. For largd/, the residue at the 3 y %

singularityt= —i shows that result(A4) implies
lg~Vm-t, (A11)

Then from Eq.(59) we find that the shift in the eigenvalue
from its standard value is

I~V (A4)
(i) The integrall 5,

| ! § doe 10 (A5) A 1
2:— —_——. p
2w J r(0)F(0) —~—, (A12)
- . pum
We first integrate by parts to obtain
. i v oo,
i dge-il" and therefore-=0 asVy—
2= N o2 é F(o) ' (A6) B. Alper, M. K. Bevir, H. A. B. Bodinet al, Plasma Phys. Controlled
2mN1+Vy Fusion31, 205 (1989.
. ~ 2A. M. Garofalo, E. J. Strait, J. M. Bialekt al, Nucl. Fusion40, 1491
Introducingt=tan#d/2 as before, and at largé,,
(2000.
Am 3C. G. Gimblett, Nucl. Fusior26, 617 (1986.
i o om [P T 2iVgy | (t+i )t 4C. G. Gimblett, Plasma Phys. Controlled FusRiy 2183(1989.
lo=— = (2V0) - AR 5T. H. Jensen and R Fitzpatrick, Phys. Plasi8a2641(1996.
MV, =\ t+i/2V, (t=1) bL. Zakharov, “Stabilization of tokamak plasmas by lithium streams,” sub-
(A7) mitted to Comments Plasma Phys. Control. Fusion.

. ) ) 7J. W. Connor, C. G. Gimblett, H. R. Wilson, J. P. Freidberg, and R. J.
This can be evaluated most conveniently by contour integra- Hastie, Theory of Fusion Plasmaé&ditrice Compositori, Bologna, 2090

tion around the upper halfplane. For larg&/, the residue at P 307-
. J. M. Finn, Phys. Plasmé& 3782(1995.
t=i shows that

9C. G. Gimblett and R. J. Hastie, Phys. Plasiag58 (2000.
[y (M) A8) i’A. Bpndes_on and H. X. _Xie, Phys. Plasmgs2081(1997.
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