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Resistive wall modes and nonuniform wall rotation
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The resistive wall mode~RWM! poses a threat to many plasma confinement devices. The continuous
rotation of the wall relative to the plasma makes it appear perfectly conducting, because of the skin
effect, but this is ineffective if the perturbation locks to the wall. This raises the question of whether
a nonuniformly rotating wall is more effective. In this paper we discuss the effect of such
nonuniform wall rotation, in both the toroidal and poloidal directions, on resonant and nonresonant
RWMs. In the case of toroidal rotation it is shown that at large wall velocity both the resonant and
nonresonant RWMs are stabilized, even though the nonresonant mode rotates with the maximum
wall velocity. In the case of poloidal rotation RWMs do not lock to the wall and have a complicated
behavior at intermediate velocities. However they are again stabilized by large wall velocity.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1388035#
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I. INTRODUCTION

Resistive wall modes~RWMs! pose a threat to man
plasma confinement devices. They are instabilities that a
because the vessel surrounding the plasma is imperfe
conducting. They would not occur if the wall were a perfe
conductor, and grow at a rate determined by the vertical fi
penetration time of the vessel. One of the earliest obse
tions of a RWM was in a Reversed Field Pinch~RFP!.1 In a
RFP, the fastest growing RWM is typically nonresonant~i.e.,
nowhere is the pitch of the perturbation equal to that of
equilibrium magnetic field!. This means that the plasma ca
be considered ideally conducting everywhere. This is a
true for the external current-driven kink mode in a tokam
However, an important RWM in advanced tokamaks is
so-called pressure-driven external kink, which occurs wh
the plasma exceeds the ‘‘no-wall’’b limit and has been ob
served in the DIII-D experiment.2 This mode is essentially
toroidal in nature, with the toroidicity and pressure comb
ing to couple neighboring resonant harmonics. It involv
nonideal effects at the resonances and must be treated
rately.

Bulk rotation of the plasma relative to the wall can res
in the plasma ‘‘seeing’’ the wall as perfectly conducting, b
cause of the skin effect. However, this stabilizing influen
vanishes if the mode ‘‘locks’’ to the wall.3 This has led to the
suggestion that there should be a second, rotating wall4 ~pos-
sibly simulated by a suitable configuration of external s
sors and coils5!: then the mode cannot simultaneously lock
both walls, and may be stabilized. The proposed use o
flowing lithium wall in a power plant6 leads to a configura
tion in which the ‘‘wall’’ moves poloidally in opposite direc
tions in the upper and lower halves of the poloidal cro
section. Such nonuniform ‘‘rotation’’ should also tend
stabilize the RWM as it cannot lock to the wall everywher7
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In this paper we analyze the effect of nonuniform w
rotation, in both the toroidal and poloidal directions, o
RWM stability. A poloidally varying wall rotation couples
different poloidal harmonics~labeled by poloidal harmonic
numberm! of the perturbation and leads to a recurrence
lation between them. This relation involves the wall tim
constant, the flow velocity and a set of stability indicesDm8 .
These indices depend on the plasma profiles but are inde
dent of rotation. For our present purposes they are con
ered as given parameters.

For a specific configuration~i.e., givenDm8 ! the problem
can readily be solved numerically and we describe so
such solutions. However, we first derive some important a
lytic results that illustrate general features of the proble
These serve to guide and interpret the numerical results.
first investigate the case of toroidal flowV5V(u)ez , with ez

a unit toroidal vector andu the poloidal angle. The basi
equation is derived in Sec. II, and the specific case of si
soidal variation is formulated in Sec. II A. In Sec. II B w
investigate the case of small velocity, while in Secs. II C a
II D we explore the case of large velocity for nonresona
and resonant modes. This is followed in Secs. II E, II F, a
II G by some numerical results, including the critical flo
velocity required for stabilization of the~nonresonant!
current-driven and~resonant! pressure-driven modes in a to
kamak.

We then turn to the case of poloidal flowV5V(u)eu .
This problem is formulated in Sec. III and the case of sin
soidal variation is analyzed in Secs. III A, III B, and III C
Numerical results for poloidal flows are presented in S
III D, and the special case of a poloidal ‘‘step’’ flow with
variation V5V0sign(u) is discussed in Sec. III E. A sum
mary and conclusions are given in Sec. IV.
2 © 2001 American Institute of Physics
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II. TOROIDAL FLOWS

The starting point for our investigation is the lineariz
induction equation for the magnetic perturbationb in the
wall:

]b

]t
5¹Ã~VÃb!1hW¹2b, ~1!

wherehW is the wall resistivity~assumed uniform!. Decom-
posing the radial component ofb as

br5S (
m52`

`

bm expimu D exp~pt1 ikz!, ~2!

and taking a cylindrical limit, the radial component of E
~1! gives

(
m

pbm expimu5(
m

S 2 ikV~u!bm1hW

]2bm

]r 2

2
m2

r 2 hWbmDexpimu. ~3!

To connect the interior with the exterior~vacuum! region we
integrate Eq.~3! across the wall~radiusa, thicknessdW!, to
obtain

(
m

„p1 ikV~u!…dWbm expimu

5(
m

~hW /a!~Dm8 2m2dW /a!bm expimu, ~4!

whereDm8 is the stability index~at the wall! of the mth po-
loidal harmonic, namely the dimensionless discontinuity
the logarithmic derivative ofbm across the thin wall:

Dm8 5
a

bm
Fdbm

dr G
a2

a1

. ~5!

Thus, if the wall velocity is

V~u!5V0(
n

vn expinu, ~6!

then Eq.~4! gives the difference relation

pbm1 iV̂0(
n

vnbm2n5Dm8 bm2km2bm , ~7!

where we have introduced the wall time constanttW

5adW /hW , normalizedp to tW , and setV̂05kV0tW . The
dimensionless velocityV̂0 is the key parameter in the prob
lem; the small parameterk5dW /a can help numerical con
vergence but will be neglected in the analysis that follow

A. Theoretical analysis—Sinusoidal variation

Now we must choose a functional form forV(u). A
particularly tractable choice isV(u)52V0 sinu. Then Eq.
~7! reduces to

pbm1V̂0~bm212bm11!5Dm8 bm . ~8!
Downloaded 31 Jan 2002 to 128.59.51.36. Redistribution subject to AIP
A useful insight can be obtained by multiplying Eq.~8! by
bm* and summing overm to find

p( ubmu22( Dm8 ubmu2

5V̂0F( ~bm* bm112bm11* bm!G . ~9!

The right-hand side~rhs! of Eq. ~9! is purely imaginary, so
that

R~p!5
(Dm8 ubmu2

(ubmu2
~10!

@a similar result applies for any anti-symmetricV(u)#. This
identity illustrates how differential rotation can lead to sta
lization, even thoughV̂0 does not appear explicitly in it. At
V̂050 an unstable RWM is associated with a single posit
Dm8 ; indeedR(p)5Dm8 .3 As V̂0 increases, the coupling be
tween thebm given by Eq.~8! will cause thebm spectrum to
broaden so thatR(p) is influenced by otherDm8 . At high m
these are vacuum-like withDm8 ;22umu, so that the growth
rate is reduced below its zero velocity value.

Another feature of Eq.~8! is that when we reverse th
direction of the flow, V̂0→2V̂0 , the Fourier modesbm

→bm expimp, so that if the originalbm were of the same
sign, those for reversed flow would alternate in sign. Ho
ever, this phase change has no effect on the growth rate

B. Small velocity

We first analyze Eq.~8! for the case of smallV̂0 . Start-
ing from the V̂050 solution, when only onebm is excited
andpm5Dm8 , the first order perturbation vanishes~in agree-
ment with the fact thatV̂0→2V̂0 has no effect on mode
frequency!. By iterating Eq.~8! we find

~pm2Dm8 !bm5V̂0
2F bm122bm

pm2Dm118
2

bm2bm22

pm2Dm218 G , ~11!

so toO(V̂0)2,

~pm2Dm8 !1V̂0
2F 1

Dm8 2Dm118
1

1

Dm8 2Dm218 G50. ~12!

If m now refers to the most unstable RWM atV̂050, we
have

Dm8 .Dm118 ,Dm218 , ~13!

so that

pm;Dm8 2mV̂0
2, ~14!

where m is positive. Hence, as expected,V̂0 reduces the
growth of the most unstable RWM. In the case of the seco
most unstable mode, the inequalities~13! are replaced by

Dm118 .Dm8 .Dm218 , ~15!

andm can be of either sign, depending on the relative valu
of the three largestD8s.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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C. Large velocity, nonresonant modes

We now turn to the case of large rotational velocityV̂0 ,
where we expect a broad spectrum ofbm to be excited. We
write bm5expifm so that the difference equation~8! be-
comes

~p2Dm8 !5V̂0@expi ~fm112fm!2expi ~fm212fm!#.
~16!

This suggests that eitherp or someDm8 becomes large a
V̂0→`. Only the former can occur for nonresonant mod
and in this case we putp52iV̂0 sina. Then, treatingm as a
continuous variable and assuming thatdf/dm varies slowly,
we have

sinS df~m!

dm
D 5sina1

iDm8

2V̂0

, ~17!

so that

df

dm
5a1g, or p2~a1g!, ~18!

whereg→0 asV̂0→`. If aÞp/2,

g.
iDm8

2V̂0 cosa
, ~19!

and if a5p/2,

g.6~ i 21!A uDm8 u

2V̂0

. ~20!

For definiteness we choose the root such thatI(g),0 as
umu→`. Then the appropriate forms forbm are the right
solution ~bm→0 asm→1`!,

bm.expi S ~p2a!m2Em

gdmD , ~21!

and the left solution~bm→0 asm→2`!,

bm.expi S am1Em

gdmD . ~22!

These solutions are valid for allm as V̂0→`, but must
be matched at an intermediatem. To do this we return to the
exact difference equation,

2i sina2
Dm8

V̂0

5S bm11

bm

2
bm21

bm
D . ~23!

Then, for largeV̂0 , from Eqs.~21!, ~22! and ~23!, we have

2i sina.22 exp~2 ia!, ~24!

so thata56p/2. The mode frequency is therefore

p562iV̂0 , ~25!

and the phase change between adjacent Fourier harmon
p/2 for both positive and negativem. ~Note that these result
are independent of whichm we choose for matching the le
and right solutions.!
Downloaded 31 Jan 2002 to 128.59.51.36. Redistribution subject to AIP
s

s is

An estimate of the dampingR(p) of this mode can be
obtained from the identity derived earlier, Eq.~10!,

R~p!5
(Dm8 ubmu2

(ubmu2
. ~26!

From Eqs.~20!, ~21! and ~22! the spectrum at largem is

ubmu2.expS 2
4

3

umu3/2

V̂0
1/2 D , ~27!

which extends toumu;V̂0
1/3. Consequently at largeV̂0 ,

R(p) becomes independent of the spectrum at smallumu
and, replacing sums by integrals, tends to

R~p!.
2*0

`2m exp~24m3/2/3V̂0
1/2!dm

*0
` exp~24m3/2/3V̂0

1/2!dm
, ~28!

i.e.,

R~p!.2
~9V̂0/2!1/3G~4/3!

G~2/3!
.21.09V̂0

1/3. ~29!

Finally, therefore, at largeV̂0 ,

p.62iV̂021.09V̂0
1/3. ~30!

Physically this solution corresponds to a stable mode
travels toroidally at the maximum wall speed@presumably
because mode locking is most effective whereV(u) is sta-
tionary in u#. The frequency, damping and structure of th
mode do not depend onDm8 ; consequently it is auniversal
mode, independent of lowumu features and therefore of th
plasma profile!

D. Large velocity, resonant modes

In advanced tokamaks a performance limiting instabil
is the RWM that arises from the pressure-driven exter
kink.2 The mode is essentially toroidal, with resonant sid
bands driven by toroidicity andb. This does not lend itself
readily to analytic investigation. However, a cylindric
model of this mode can be constructed, as demonstrate
Finn,8 who modeled the toroidal mode by a cylindrical equ
librium that was ideal unstable in the absence of a wall,
had a resonance in the plasma atr 5r s . It was shown in
Refs. 9 and 10 that this construction leads to the relation

D28~r s!5S 12dD28~r W!

D28~r W!2e D , ~31!

between theplasmaresponse at the resonant layer,D28(r s),
and thewall responseD28(r W). ~The subscript 2 indicates
that we are taking the internal plasma resonance to be a
ciated withm52.! The parametere.0 represents the degre
of ideal instability in the absence of a wall,D28(r W)→0, and
d.0 represents the degree of tearing stability in the prese
of an ideal wall,D28(r W)→`.

With this qualitative model, the resonant RWM can
investigated by solving Eq.~31! for the wall response
D28(r W) when the plasma resonant layer responseD28(r s) is
given. We take this layer response to be the ‘‘visco-resistiv
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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form D28(r s)5ptV /tW ~wheretV is a hybrid layer time! be-
lieved to be relevant for many tokamaks.11 For simplicity we
also taketV5tW . Finally, then, we have for theD28 to be
used in Eq.~8!:

D285S 11ep

d1p D . ~32!

Note that, unlike the earlier discussion,D28 now explicitly
depends onp.

The effect of differential wall rotation on resona
RWMs is quite different from the effect in the nonresona
case. This is because the resonantD28→` as p→2d. This
leads to a narrow spectrum ofbm despite the coupling intro
duced by wall rotation.

Returning to Eq.~17! we have

sinS df

dm
D 5

1

2iV̂0

~p2Dm8 !, ~33!

so at largeV̂0 , for all Dm8 exceptm52,

df

dm
5

1

2iV̂0

~p2Dm8 ! or p2
1

2iV̂0

~p2Dm8 !. ~34!

Therefore, form,2,

bm.expF 1

2V̂0

S mp2Em

Dm8 dmD G , ~35!

and form.2,

bm.expF ipm2
1

2V̂0

S mp2Em

Dm8 dmD G . ~36!

As before, we have to match these two solutions,
now we must do so atm52. As V̂0→`, Eq. ~35! gives
bm11 /bm→21 for m,2 and Eq. ~36! gives bm21 /bm

→11 for m.2, so matching these atm52 leads to the
dispersion relation

~p2D28!522V̂0 , ~37!

i.e.,

S p2
11ep

d1p D522V̂0 . ~38!

Therefore, as expected, whenV̂0→`, p→2d. We are only
interested in RWMs if the system would be stable with
ideal wall, i.e., ifd.0, hence in cases of interest the reson
RWM is stable at large wall velocity.~Essentially this stabi-
lization comes about because in this case the skin effec
ally does make the wall appear ideal.! The Fourier spectrum
is peaked atm52 and form,2 adjacent harmonicsbm have
the same phase, whereas form.2 they have opposite phas
As remarked earlier, this behavior is reversed ifV̂0→2V̂0 .
Note that this resonant mode doesnot lock to the wall and
that it is again universal, in the sense that it is independen
all Dm8 except the resonantDm8 .
Downloaded 31 Jan 2002 to 128.59.51.36. Redistribution subject to AIP
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E. Numerical solution of the toroidal flow case

Equation~8! was solved numerically both by matrix in
version and using a ‘‘shooting’’ method. A model is need
for the set ofDm8 values. Of course, for a specific situatio
one would determine the equilibrium profile and numerica
calculate these quantities. However, for an initial investig
tion this is not necessary, and we can assign them plaus
values. The unstable nonresonant RWM was chosen to
m53 and represented by settingD38 to 12. In a cylindrical
model theD618 are universal~due to the ‘‘top hat’’ nature of
the eigenfunction! and for all equilibria,

D618 5
22qa

qa71
, ~39!

whereqa is the wall value of the safety factor which we tak
to be qa53. The remainingDm8 were set to the vacuum re
sponse, i.e.,D08522, Dm8 522umu.

F. Nonresonant modes

The results of a typical numerical calculation are sho
in Fig. 1. ~In all figures the solid lines denote a purely re
eigenvaluep and the broken and dotted lines denote the r
and imaginary parts of a complex eigenvalue.! It can be seen
that the growth rate of the most unstable RWM~p52 at
V̂050! decreases with velocity, in fact in close agreeme
with Eq. ~14!. For this mode the eigenvaluep remains real
~i.e., the mode does not spin up or lock to the wall! and it
becomes stable atV̂0.2.6.

Figure 1 also shows two other modes, which are stabl
V̂050. These coalesce atV̂0.0.33 and begin to ‘‘spin up,’’
as indicated by complexp, eventually approaching the max
mum wall velocity @Im(p);2iV̂0, in accord with Eq.~30!#.
Note that this mode has the smallest damping rate forV̂0

*3.9, i.e., at largeV̂0 the least damped modeis the universal
nonresonant mode described in Sec. II C.

FIG. 1. The effect of a toroidal sinu-dependent flow on a nonresonan
RWM. ~i! Solid line, real eigenvaluep. ~ii ! Broken line, Re(p). ~iii ! Dotted
line, Im(p).
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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G. Resonant modes

As mentioned earlier, an important mode in a tokamak
the pressure-driven external kink RWM, which is essentia
toroidal and involves a resonant plasma layer. In Sec. II D
described a simple cylindrical model that mimics this tor
dal mode and leads to the form forD28(r W),

D285S 11ep

d1p D . ~40!

For numerical work we takee50.1 andd51.0, keeping
other parameters as in the nonresonant calculation. The
sults are shown in Fig. 2. AtV̂050 there is an unstablem
53 RWM with p52, and an unstablem52 mode withp

.0.6, arising from Eq.~40!. We see that asV̂0 increases
these two modes coalesce~at V̂0.0.8! to give modes with
complex eigenvalues. These are eventually stabilized aV̂0

;2.8. There is also a stablem52 mode, withp;21.6 at
V̂050. For this modep remains real asV̂0 increases and fo
V̂0*4 it becomes the least damped mode. Its eigenva
asymptotes top52d in accord with the analysis in Sec
II D.

III. POLOIDAL FLOWS

The starting point for the analysis of the effect of polo
dal wall rotation is again Eq.~1! where the flow is nowV
5V(u)eu . For a general poloidal flow,

V~u!5V0( vn expinu, ~41!

we obtain

pbm1 imV̂0(
n

vnbm2n5Dm8 bm , ~42!

where nowV̂05V0tW /a. Note that the toroidal wave num
ber does not appear explicitly in Eq.~42!. As noted earlier, a
flowing lithium blanket could be modeled as a counter rot
ing flow in upper and lower halves of the poloidal cros
section@‘‘step flow’’ V5V0 sign(u)#. This would correspond
to coefficients

FIG. 2. The effect of a toroidal sinu-dependent flow on a resonant RWM
~i! Solid line, real eigenvaluep. ~ii ! Broken line, Re(p). ~iii ! Dotted line,
Im(p).
Downloaded 31 Jan 2002 to 128.59.51.36. Redistribution subject to AIP
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vn52
2i

pn
, n odd,

~43!
50, n even,

and introduces coupling between all Fourier harmonicsbm ,
as well as requiring singularities atu50,p. Accordingly, we
consider first the much simpler case of sinusoidal variat
V522V̂0 sinu ~which could be approximately realized by
blanket fed by a suitable array of injection and extracti
points around the periphery of the tokamak!.

A. Analysis of poloidal flows—a ‘‘standard model’’

For a poloidal flow with a sinusoidal variation, Eq.~42!
reduces to

~p2Dm8 !bm1mV̂0~bm112bm21!50. ~44!

Although this is similar to the equation for toroidal flow@Eq.
~8!#, the two cases are significantly different. With toroid
flow the wall velocity is constant along the direction of m
tion, whereas with poloidal flow the wall velocity change
and indeed reverses, along the direction of motion. Con
quently we expect ‘‘wall locking’’ to be more strongly inhib
ited with poloidal flows.

A remarkable feature of Eq.~44! is that positive and
negative harmonics~m-numbers! are decoupled from eac
other, andb050 except for them50 mode~which is unaf-
fected by rotation!. By exploiting these features we can o
tain anexactsolution for a particular set ofDm8 . This special
solution then forms the basis for some important gene
results.

The exact solution is obtained by takingDm8 522umu for
all m. Then

~p12m!bm1mV̂0~bm112bm21!50. ~45!

Multiplying this by expimu, and summing over positivem
gives

S p22i
]

]u Db~u!22V̂0

]

]u
„b~u!sinu…50, ~46!

whereb(u)5(bm expimu. Then

b~u!5
1

~12 iV̂0 sinu!
expH 2

ip

2
Eu du

~12 iV̂0 sinu!
J .

~47!

Sinceb(u) must be periodic, we obtain the exact eigenval

p522m~11V̂0
2!1/2: m5positive integer, ~48!

with the corresponding eigenfunction

b~u!5
1

~12 iV̂0 sinu!
H tanu/22 iV̂02 i ~11V̂0

2!1/2

tanu/22 iV̂01 i ~11V̂0
2!1/2J m

.

~49!

We see that for this ‘‘standard model,’’ all RWMs are stab
and the damping rate increases with the wall velocity,
ymptotically approaching22mV̂0 . All eigenvalues are
purely real so that, as expected, there is no ‘‘wall locking
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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Although this model (Dm8 522umu) is valuable as a
benchmark for numerical computations it is clearly not re
resentative of more general situations—particularly as i
all RWMs are stable for any wall velocity! However, th
restricted model forms the basis for an important extens
to RWMs with arbitrary values ofDm8 and large wall velocity.

B. Analysis of poloidal flows—a general large V
model

The basis for extending the restricted model to m
general cases is the following observation. If we introdu
p̂5p/V̂0 the fundamental equation becomes

S p̂2
Dm8

V̂0
D bm1m~bm112bm21!50. ~50!

This suggests that at largeV̂0 ,Dm8 is unimportant unless it is
itself large. However, except for the resonant mode,Dm8 is
large only at largem—where it always has the standa
value22umu. Accordingly we expect that, irrespective of th
Dm8 for small m ~i.e., irrespective of the plasma profile! the
eigenvalues of Eq.~50! will always tend asymptotically to
those of the standard model asV̂0 increases. This is demon
strated for a single nonstandardDm8 , in detail below.

Consider a model in which only oneDm8 differs from the
standard value, i.e.,Dm8 522umu for mÞ l and D l8 is arbi-
trary. Then, if we carry out the same steps as in solving
standard model, we obtain in place of Eq.~46!,

2
]

]u
~V̂0 sinu1 i !b~u!2pb~u!

52~D l812l !expi l u R du

2p
b~u!exp~2 i l u!. ~51!

Putting (V̂0 sinu1i)5r(u), r (u)b(u)5h(u) and

R du

2p

h~u!

r ~u!
exp~2 i l u!5H, ~52!

Eq. ~51! can be written as

]h

]u
2

p

2

h~u!

r ~u!
52

~D l812l !

2
exp~ i l u!H. ~53!

Therefore

h~u!expS 2
p

2
R~u! D

52F ~D l812l !

2 E
2p

u

expS 2
p

2
R~u8!1 i l u8Ddu8GH11,

~54!

where

R~u!5E
0

u du8

r ~u8!
, ~55!

andh is normalized so that the integration constant is un
Introducing
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I 15 R expS 2
p

2
R~u!1 i l u Ddu,

I 25
1

2p R expS p

2
R~u!2 i l u D du

r ~u!
,

and

I 35
1

2p R 1

r ~u!
expS p

2
R~u!2 i l u Ddu

3E
2p

u

expS 2
p

2
R~u8!1 i l u8Ddu8, ~56!

Eqs.~52! and ~54! give

F11
~D l812l !

2
I 3GH5I 2 . ~57!

Sinceh(u) must be periodic, Eq.~54! also gives

expF2
p

2
R~2p!G2152

~D l812l !

2
I 1H, ~58!

i.e.,

expS ipp

~11V̂0
2!1/2D 215

2~D l812l !I 1I 2

„21~D l812l !I 3…
. ~59!

This equation gives the RWM frequencyp in a form that
involves only standard integrals. Its immediate importance
that it can be shown~see the Appendix! that the expression
on the right hand side of Eq.~59! tends to zero asV̂0→`.
Thus, irrespective ofD l8 the eigenvaluesp approach those o
the standard model as the rotation speed increases.

C. Marginal stability and pÄ0

An indication of the complicated behavior of RWMs i
the intermediate region between small rotation veloc
~where pm;Dm8 ! and large rotation velocity@where pm

→22m(11V̂0
2)1/2# can be obtained by examining the ca

p50. We consider a model in which a few, smallm, param-
eters Dm8 , may be arbitrary and the remainder have th
standard values22umu ~i.e., Dm8 522umu for m>m0!. ~This
is the typical situation for model tokamak plasmas.! Then,
for p50 andm>m0 ,

2bm1V̂0~bm112bm21!50, ~60!

so thatbm5lm with

l5S 11
1

V̂0
2D 1/2

2
1

V̂0

. ~61!

~For V̂0.0, l,1 so thatbm→0 asm→`.! We now match
this solution to that obtained by repeated application of
difference equation,

2
Dm8

m
bm1V̂0~bm112bm21!50, ~62!
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starting fromb050. For example, in the simplest case th
only D18 differs from its standard value, we use Eq.~62! to
obtainb2 /b1 and match it tobm5lm, i.e.,

D18

V̂0

5
b2

b1

5l5S 11
1

V̂0
2D 1/2

2
1

V̂0

. ~63!

Thus, if D18.0, the critical velocityV̂c at whichp50 is

V̂c
25~11D18!221. ~64!

This is in accord with the fact that there is a single unsta
mode atV̂050 that becomes stable atV̂05V̂c , andV̂c is the
true stability boundary.~If D18,0 there is no real velocity for
which p50 as all modes are stable for allV̂0 .!

The situation is more complicated when more than o
Dm8 differs from its standard value. For example, whenD18
andD28 are nonstandard we have, form51,

D18

V̂0

5
b2

b1

, ~65!

and form52,

D28

2V̂0

5
b3

b2

2
b1

b2

, ~66!

so that matchingb3 /b2 to bm5lm gives for the critical ve-
locity

D28

2
1

V̂0
2

D18
5~11V̂0

2!1/221. ~67!

As a function ofD18 ,D28 there are now several distinc
regimes, as shown in Fig. 3.

FIG. 3. The different regimes for two nonstandardD8s.
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~a! If D18,0, D28,0 ~Region D!, Eq. ~67! has no valid
roots. This is in accord with the fact that all RWMs a
stable for any velocity, so there is no marginal stabil
boundary.

~b! If D18,0, D28.0, or D18.0, D28,0 ~RegionsC,E!,
Eq. ~67! has one valid root. In this region there is on
stable and one unstable eigenvalue atV̂050. However,
as we will see in Sec. III D, the pointp50 need not
correspond to the unstable eigenvalue becoming sta
Instead it may correspond to the stable one becom
unstable! Consequentlyp50 is not necessarily the
marginal stability boundary in this regime.

~c! If D18.0, D28.0, there are three subregions to co
sider.

~i! In regionA1 , with D28. f (D18) where

f~D18!5
~D1822!2

2D18
, ~68!

and regionA2 with D28, f (D18) and D18,2, Eq. ~67!
has no valid roots. This is despite the fact that the
are two unstable eigenvalues atV̂050 that become
stable asV̂0→`. This is an indication that the eigen
values become complex before stabilization.

~ii ! In regionB, with D28, f (D18) andD18.2, Eq.~67! has
two real roots. In this case the larger root may rep
sent the marginal stability boundary but, as in~b!
above, this is not always the case.

We now examine the behavior in each of these region
detail.

D. Numerical solution with poloidal flow

We have investigated each of the distinct regions ide
fied in the previous section by numerical computation, ag
using matrix inversion and a shooting code. In both metho
particularly at highV̂0 , great care must be taken to retain
appropriate number ofbm . A summary of the results is a
follows.

~a! In regionD (D18,0,D28,0) all modes are stable at a
velocities. There are two typical ways in which th

FIG. 4. The effect of poloidal sinu-dependent flow,D18521.0, D28
524.0.~i! Solid line, real eigenvaluep. ~ii ! Broken line, Re(p). ~iii ! Dotted
line, Im(p).
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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eigenvalues develop asV̂0 increases. They may remai
real for all V̂0 , tending asymptotically to22mV̂0 , or
two eigenvalues may coalesce and give rise to a pa
stable complex eigenvalues. In Fig. 4 (D18521,D28
524) the uppermost eigenvalue emanating fromp

521 at V̂050 remains real for allV̂0 whereas the
next eigenvalue, emanating fromp524, coalesces
with a third eigenvalue and gives rise to a pair
stable, complex eigenvalues. In Fig. 5 (D18523,D28
524) two stable eigenvalues also coalesce and g
rise to a complex pair, but later these revert to two r
eigenvalues and asymptotically approach22mV̂0 .

~b! In regions C (D18,0,D28.0) and E (D18.0,D28,0)
there is one unstable and one stable eigenvalue aV̂0

50 and two typical ways for these eigenvalues to b
have asV̂0 increases. In Fig. 6 (D18520.1,D2850.5)
the stable eigenvalue is first drivenunstableas V̂0 in-
creases. Subsequently it coalesces with the other
stable eigenvalue to give rise to unstable complex
genvalues. These are eventually stabilized as
velocity increases further. Clearly the pointp50 at

FIG. 5. The effect of poloidal sinu-dependent flow,D18523.0, D28
524.0.~i! Solid line, real eigenvaluep. ~ii ! Broken line, Re(p). ~iii ! Dotted
line, Im(p).

FIG. 6. The effect of poloidal sinu-dependent flow,D18520.1, D2850.5.
~i! Solid line, real eigenvaluep. ~ii ! Broken line, Re(p). ~iii ! Dotted line,
Im(p).
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V̂0.0.2 does not define the stability boundary in th
case. In Fig. 7 (D18521.0,D2850.5) the unstable ei-
genvalue is first stabilized atV̂0.0.4 and only at
higher V̂0 do the eigenvalues coalesce and give rise
stable complex eigenvalues. In this casep50 doesde-
fine the marginal stability boundary.

~c! In regionsA1 andA2 there are two unstable eigenva
ues atV̂050 and their typical behavior is illustrated i
Fig. 8 (D1852.0,D2850.5). In this case the unstable e
genvalues first coalesce asV̂0 increases and give rise t
unstable complex eigenvalues. These are subseque
stabilized asV̂0 increases beyond.1.8. There is no
point p50, in accord with the analysis of Sec. III C.

~d! In regionB there are again two unstable eigenvalues
V̂050, and two typical ways in which they develop. I
Fig. 9 (D1854.2,D2850.5) the lower eigenvalue is firs
stabilized atV̂0.1.2, but then goesunstableagain as
V̂0 increases further! It then coalesces with the high
eigenvalue to give unstable complex eigenvalues t
eventually stabilize at a still higher velocity. There a
two points p50, in accord with the analysis of Sec
III C, but neither defines the marginal stability boun
ary. In Fig. 10 (D1855.0,D2850.5) both eigenvalues ar

FIG. 7. The effect of poloidal sinu-dependent flow,D18521.0, D2850.5.
~i! Solid line, real eigenvaluep. ~ii ! Broken line, Re(p). ~iii ! Dotted line,
Im(p).

FIG. 8. The effect of poloidal sinu-dependent flow,D1852.0, D2850.5.
~i! Solid line, real eigenvaluep. ~ii ! Broken line, Re(p). ~iii ! Dotted line,
Im(p).
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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stabilized before they coalesce to give complex eig
values. In this case the higher pointp50 doesdefine
the marginal stability boundary.

It is clear from these examples that with nonunifor
poloidal wall rotation the behavior of RWMs i
complicated—though they are always stabilized at a su
ciently high velocity. Modes with complexp frequently
arise, but they are not associated with simple wall-locking
was the case with toroidal rotation.

E. Step flow

The work so far described concerns the effect of w
rotation with sinusoidal variation in velocity. We have al
carried out a limited investigation of a ‘‘step flow’’ variatio
of poloidal velocity,V5V0 sign(u), such as might represen
a simple form of a flowing lithium wall blanket.

As noted earlier, for a step flow variation of velocity a
Fourier harmonicsbm are directly coupled. In particular, th
positive and negativem numbers are not decoupled as th
are for sinusoidal variation. The effect of this coupling b
tween distant Fourier modes can be seen in Fig. 11. T
shows the critical velocity required for stability as a fun
tion of D38 when all otherDm8 are fixed. @In Fig. 11, D08
522, D618 522qa /(qa71), qa53 and all other Dm8

FIG. 9. The effect of poloidal sinu dependent flow,D1854.2, D2850.5. ~i!
Solid line, real eigenvaluep. ~ii ! Broken line, Re(p). ~iii ! Dotted line, Im(p).

FIG. 10. The effect of poloidal sinu-dependent flow,D1855.0, D2850.5. ~i!
Solid line, real eigenvaluep. ~ii ! Broken line, Re(p). ~iii ! Dotted line, Im(p).
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522umu.# The solid line shows the critical velocity with ste
flow variation, calculated retaining all Fourier harmoni
240,m,40. The broken line shows a similar calculatio
when only three harmonicsm52,3,4 are retained, as in Re
6. This ‘‘three-harmonic’’ approximation leads to a cub
equation for the eigenvaluep as a function ofD38 :

F~p!5p31~122D38!p21~32212D38118V̂0
2!p

1~96V̂0
2232D38!50. ~69!

By mapping the half plane Re(p),0 on to the complexF
plane it can be shown that solutions of Eq.~69! correspond
to stable modes provided

V̂0
2.D38/3 ~70!

and

V̂0
2.

2„~D38!2212D38132…

3D38220
, ~71!

so the larger of Eq.~70! and Eq.~71! defines the critical
velocity. @Only when the critical velocity is given by Eq.~70!
does it also correspond top50.#

It is interesting that in Fig. 11 the ‘‘three harmonic
approximation agrees well with the full calculation whe
D38&5, but differs markedly for largerD38 . Indeed in the
three harmonic approximation the critical velocity→` as
D38→20/3 whereas the full calculation remains finite. A
other interesting feature is that the point at which the criti
velocity ceases to be given byp50 in the full step flow
calculation is also atD38.20/3.

IV. SUMMARY AND CONCLUSIONS

It is well known that Resistive Wall Modes are influ
enced by rotation of the wall relative to the plasma—beca
the skin effect makes the wall appear as an ideally cond
ing boundary. However, this effect disappears for pertur
tions that lock to the wall rather than to the plasma.3 In this
work we have examined the effect ofnonuniformwall rota-

FIG. 11. Critical velocity needed to stabilize the nonresonant RWM~poloi-
dal ‘‘step’’ flow!.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp



it
o

r
e

on

ro
i

e

n
ra
A
n

so

-
e

p
s

th
an

th
b

e

a
n-

de

l

al
n.
o
a
is

oc

n

e
cu
to

a

ior
on

ti-
l

-
es

-

e
en-

zed.

p-
nu-
in

al
x-

-
-
ou-
or

en

er,
n

e

is

4071Phys. Plasmas, Vol. 8, No. 9, September 2001 Resistive wall modes and nonuniform wall rotation
tion on RWMs in a torus. Nonuniform rotation should inhib
locking to the wall and may therefore provide stabilization
RWMs.

For a poloidally varying rotation, in either the toroidal o
poloidal directions, the growth of RWMs is given as th
eigenvaluep of a difference equation that depends only
the wall penetration time,tW , the wall velocityV(u) and a
set of indicesDm8 . These indices depend on the plasma p
file but are independent of wall rotation. Thus the problem
separated into two parts:~i! the determination of stability
indices from the equilibrium profile and~ii ! the determina-
tion of the effect of rotation when the indices are given. W
have considered only problem~ii ! here.

For a poloidally varying rotation in the toroidal directio
we indeed find that rotation always reduces the growth
of the most unstable mode below its zero velocity value.
high velocity, with a sinusoidal variation, we have show
analytically that RWMs tend to a universal damped nonre

nant mode withp;2iV̂02V̂0
1/3. This mode is peaked in po

loidal angle and rotates toroidally at the maximum wall v

locity V̂0 . It is independent of the parametersDm8 , and
therefore of the plasma profile. There may also be a dam
resonant mode at high velocity that does not rotate. Thi
also universal in that it is independent of allDm8 except the
resonant one. Its damping rate is determined, through
resonant Dm8 , by the plasma response in the reson
layer—as explained in Sec. II D.

Numerically, for a set of tokamak-like indicesDm8 ,

which correspond to a singlem53 unstable mode atV̂0

50, we find that this unstable mode does not rotate as
velocity increases: its growth rate diminishes and it is sta

lized atV̂0.2.6. Its damping rate then increases withV̂0 and

at V̂0;4.0 it ceases to be the least stable mode. ForV̂0*4
the least stable mode is the complex frequency, wall lock

universal mode described above, withp asymptotic to 2iV̂0

2V̂0
1/3 as V̂0→`.
For a set of parameters representing a system with

unstable resonantm52 mode as well as an unstable no

resonantm53 mode atV̂050, we find asV̂0 increases these
two modes coalesce to form complex frequency mo

which are stabilized atV̂0.2.8. As in the previous numerica

example, their damping then increases withV̂0 until at V̂0

.4.0 they also cease to be the least stable modes and
replaced by the universal resonant mode.

The case of nonuniform wall rotation in the poloid
direction differs considerably from that of toroidal rotatio
The wall velocity is no longer constant along the direction
motion so an element of plasma experiences a varying,
indeed reversing, wall motion. Consequently wall locking
further inhibited and more complicated mode interactions
cur.

For a sinusoidal variation of wall velocity there is a
exact ‘‘standard model’’ solution for a particular set ofDm8
~Dm8 522umu as is usual for largeumu!. The model is atypical
in that all RWMs are stable for any velocity, but it forms th
basis for the study of more interesting situations. In parti
lar, at large wall velocity the growth rate of RWMs tends
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that of the standard model irrespective of theDm8 for smallm
and therefore~in most cases! independently of the plasm

profile. Thus the standard model resultpm522mA11V̂0
2 is

universal for large poloidal rotation. However, the behav
of RWMs at intermediate velocities, between small rotati
where pm;Dm8 , and large rotation where pm;

22mA11V̂0
2, is complicated. This is indicated both analy

cally by an analysis of thep50 situation and by numerica
computation.

Considering the behavior of RWMs as a function ofD18
andD28 with otherDm fixed, we found several regimes illus
trated in Figs. 4–10. In the simplest situation the two mod
corresponding toD18 and D28 at V̂050 are stabilized asV̂0

increases and the eigenvaluespm are asymptotic to the uni

versal values22mA11V̂0
2. However, in many cases thes

modes coalesce and give rise to complex frequency eig
values either before or after one or both modes are stabili
For the parameter range examined~23,D18,5, 24,D28

,0.5! coalescence occurs in the region 0.2&V̂0&3. Eventu-
ally at sufficiently high velocity the eigenvalues must a
proach the standard values, though we have shown this
merically only in a few cases because of the difficulty
computing solutions for largeV̂0 .

In addition to the studies of the effect of sinusoid
variation in wall velocity we have carried out a limited e
amination of the effect on RWMs of a step variationVu

5V0 sign(u) in wall velocity, such as might arise in the sim
plest form of a flowing lithium blanket. This step flow intro
duces additional long range coupling between poloidal F
rier modes. In a study of the critical velocity required f
stability as a function ofD38 , with otherDm8 fixed, we found
that these additional couplings introduce little change wh
D38,5. Indeed the results forD38,5 were well reproduced
by a simple model retaining only three harmonics. Howev
for D38*5 the computations with a full interaction betwee
harmonics240,m,40 differed dramatically from the thre
harmonic model~in which the critical velocity→` when
D38→20/3!.
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APPENDIX: BEHAVIOR OF THE I1 , I2 , I3 INTEGRALS
AT LARGE FLOW

In this appendix we consider the largeV̂0 behavior of the
integralsI 1 , I 2 , I 3 required to determine the eigenvaluep
when all Dm8 have their standard values except form5 l .
As we will see, the correction to the standard eigenvalue
small whenV̂0 is large, so we may evaluateI 1 , I 2, andI 3 at

p522mA11V̂0
2.

~i! The integralI 1 ,

I 15 R duF~u!eil u, ~A1!
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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where

F5expF2~p/2!E
0

u

du/r ~u!G
5F ~V̂01A11V̂0

2!

~V̂02A12V̂0
2!

tanu/22 i ~V̂02A11V̂0
2!

tanu/22 i ~V̂01A11V̂0
2!
Gm

.

~A2!

For largeV̂0 , introducingt5tanu/2, we can writeI 1 as

I 1522~2V̂0!2mE
2`

` S t1 i /2V̂0

t22iV̂0

D m
~ t2 i ! l 21

~ t1 i ! l 11
dt. ~A3!

This can be evaluated conveniently by contour integrat
around the lower halft-plane. For largeV̂0 the residue at the
singularity t52 i shows that

I 1;V̂0
m. ~A4!

~ii ! The integralI 2 ,

I 25
1

2p R due2 i l u

r ~u!F~u!
. ~A5!

We first integrate by parts to obtain

I 25
2 i

2pA11V̂0
2
R due2 i l u

F~u!
. ~A6!

Introducingt5tanu/2 as before, and at largeV̂0 ,

I 252
i

pmV̂0

~2V̂0!2mE
2`

` S t22iV̂0

t1 i /2V̂0

D m
~ t1 i ! l 21

~ t2 i ! l 11
dt.

~A7!

This can be evaluated most conveniently by contour integ
tion around the upper halft-plane. For largeV̂0 the residue at
t5 i shows that

I 2;V̂0
2(m11) . ~A8!
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Finally, for I 3 ,

I 35
1

2p R 1

r ~u!
expS p

2
R~u!2 i l u D

3duE
2p

u

expS 2
p

2
R~u8!1 i l u8Ddu8, ~A9!

we first integrate by parts to give

I 352
1

mV̂0

1
I 1

2pmV̂0

1
i

2pmV̂0

R due2 i l u

F~u!
E

2p

u

eil u8F~u8!du8. ~A10!

Thus I 3 is dominated by the term involvingI 1 so that the
result ~A4! implies

I 3;V̂0
m21 . ~A11!

Then from Eq.~59! we find that the shift in the eigenvalu
from its standard value is

Dp

p
;

1

V̂0
m

, ~A12!

and therefore→0 asV̂0→`.
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