
LIFE CYCLE ANALYSIS OF HIGH-PERFORMANCE MONOCRYSTALLINE SILICON PHOTOVOLTAIC 
SYSTEMS: ENERGY PAYBACK TIMES AND NET ENERGY PRODUCTION VALUE 

 
 

Vasilis Fthenakis1,2, Rick Betita2, Mark Shields3, Rob Vinje3, Julie Blunden3 

 

1 Brookhaven National Laboratory, Upton, NY, USA, tel. 631-344-2830, fax. 631-344-3957, vmf5@columbia.edu 
2Center for Life Cycle Analysis, Columbia University, New York, NY 10027, USA 

3SunPower Corporation, San Jose, CA, USA 
 
 

ABSTRACT: This paper summarizes a comprehensive life cycle analysis based on actual process data from the 
manufacturing of Sunpower 20.1% efficient modules in the Philippines and other countries. Higher efficiencies are 
produced by innovative cell designs and material and energy inventories that are different from those in the 
production of average crystalline silicon panels. On the other hand, higher efficiencies result to lower system 
environmental footprints as the system area on a kW basis is smaller. It was found that high efficiencies result to a net 
gain in environmental metrics (i.e., Energy Payback Times, GHG emissions) in comparison to average efficiency c-Si 
modules. The EPBT for the Sunpower modules produced in the Philippines and installed in average US or South 
European insolation is only 1.4 years, whereas the lowest EPBT from average efficiency c-Si systems is ~1.7 yrs. To 
capture the advantage of high performance systems beyond their Energy Payback Times, we introduced the metric of 
Net Energy Production Value (NEPV), which shows the solar electricity production after the system has “paid-off” 
the energy used in its life-cycle. The SunPower modules are shown to produce 45% more electricity than average 
efficiency (i.e., 14%) c-Si PV modules. 
Keywords: Photovoltaic, energy performance, energy rating, c-Si, cost reduction 
 

 
1 INTRODUCTION 
 

Life Cycle Analysis (LCA) is a framework for 
considering the environmental inputs and outputs of a 
product or process from cradle to grave. It is employed to 
evaluate the environmental impacts of energy 
technologies, and the results are increasingly used in 
decisions about formulating energy policies. The most 
basic indicator used in interpreting the results of LCA is 
the cumulative energy demand, encompassing all energy 
used in the production and the other stages of a power 
system’s life, which is often expressed in conjunction 
with the system’s electricity output in terms of energy 
payback times (EPBT) or energy return on investment 
(EROI).  The second most basic LCA indicator is the 
greenhouse gas (GHG) emissions (GHG) during its life-
cycle.  

Early life-cycle studies report a wide range of 
primary energy consumption for Si-PV modules; Alsema 
and deWild [1, 2] reported 2400-7600 MJ/m2 of primary 
energy consumption for mc-Si, and 5300-16500 MJ for 
mono-Si modules. These wide ranges are due to data 
uncertainties, and to different assumptions and allocation 
rules adopted from different investigators. Even greater 
variations were noted in the early literature on EPBT, 
EROI and GHG estimates, reflecting different 
assumptions on the solar irradiation input into the PV 
systems.  

Early estimates fall far short of describing present-
day commercial-scale PV production. A most 
comprehensive LCA study, based on actual LCI data 
from twelve PV manufacturers, was published in 2008 
[3] and was updated in subsequent publications [4-14]. 
The group of these investigators also developed 
guidelines for transparent and well-balanced LCA of all 
PV technologies, under the auspices of the International 
Energy Agency (IEA) [15]. All previous studies of c-Si 
PV modules are based on LCI data from average 
efficiency PV modules. In this paper we summarize the 
results of a life-cycle analysis of SunPower high 
efficiency PV modules, based on process data from the 

actual production of these modules, and compare the 
environmental footprint of this technology with that of 
other c-Si technologies in the market.  
 
 
2 METHODOLOGY 

 
Our Life Cycle Assessment (LCA) complies with the 

ISO 14040 [16] and 14044 [17] standards and the IEA 
Task 12 Guidelines [15]. These guidelines prescribe a 
common approach and transparency for the evaluation of 
caused environmental impacts. The LCA addresses all 
the environmental impacts caused along the whole 
product life cycle from the extraction of raw materials, 
the material production, manufacturing, utilization, 
decommissioning, and disposal or recycling at the end-
of-life stage of the modules and balance of system (BOS) 
components. For this assessment, all required energy and 
material flows, both primary and auxiliary materials, as 
well as wastes and emissions at each life cycle stage are 
accounted for. 

Thus LCA involves a comprehensive consideration of 
the whole product life cycle, including all foreground and 
background data life-cycles. According to ISO 14040 and 
14044, the LCA is carried out in four main steps: 1) Goal 
and scope definition, 2) inventory assessment, 3) impact 
assessment, and 4) interpretation.  

Thus, the LCA study starts with the definition of the 
goal and scope and the boundary conditions of the study, 
which describe the main aim and content of the study and 
define the functional unit, the system boundaries, and 
boundary conditions. The functional unit is usually 
defined as one piece of product or the provision of a 
specific function (e.g., 1 kWh produced power). The 
second step is the Life Cycle Inventory (LCI), where all 
required data on inputs and outputs of energy, material, 
and emissions within the whole product life cycle are 
collected. Based on LCI data provided by SunPower and 
complemented by commercial databases (e.g., Ecoinvent, 
Franklin), a module and a system model for ground-
mount fixed installations, are set up.  This is supported by 
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commonly used and well-established LCA software  (i.e., 
SimaPro) that provided information on foreground and 
background data (e.g., the environmental profile of 
materials and energy production). The subsequent Life 
Cycle Impact Assessment (LCIA) (step 3) classifies 
caused emissions according to their contribution to 
environmental impact categories (e.g., Global Warming 
Potential) and characterizes them by their significance in 
relation to the reference unit (e.g., kg CO2-equiv.). 

The Interpretation of the results (step 4) can be used 
for strategic planning of product improvements, 
comparisons with other PV system life-cycles, or for 
proving the compliance to environmental directives. 

 
2.1 System boundary 

The system boundary of the LCA study considers the 
whole life cycle of SunPower’s high-performance 
crystalline Si modules including all expenses to produce 
required energies, materials, and auxiliaries. The study 
does not include the transportation of produced and used 
modules, maintenance during the utilization phase, and 
recycling at the end of the system’s life. These items 
were also excluded in all the previous LCA with which 
the current study draws comparisons. 
 
2.2 Functional unit 

The functional unit for the LCA is defined as 1 m2 of 
module area. For conversions to power output, a module 
efficiency of 20.1% and a total system performance ratio 
of 80% for ground mounted installations are assumed.  
Based on this data, the environmental profiles of PV 
power for different installation types and U.S. average 
insolation, are investigated. 
 
2.3 Geographical scope 

Production is considered for various countries 
representing SunPower’s actual cell and module 
production sites. All datasets on used materials and 
energies are based on country representative datasets. 
The use phase is assumed to be in the U.S. in average 
insolation regions (e.g., 1800 kWh/m2/yr – over latitude 
tilt). 
 
2.4 Impact categories 

The most widely accepted categories are Cumulative 
Energy Demand (CED) and Global Warming Potential 
(GWP). CED provides the basis for the calculation of the 
Energy Payback Time (EPBT), and Energy Return on 
Investment (EROI).  

Energy payback time is defined as the period required 
for a renewable energy system to generate the same 
amount of energy (in terms of primary energy equivalent) 
that was used to produce the system itself [15].  
 
Energy Payback Time = (Emat + Emanuf + Etrans + Einst + 
EEOL) / ((Eagen / nG) – EO&M) 
 

where, 
 
Emat: Primary energy demand to produce materials 

comprising PV system 
Emanuf: Primary energy demand to manufacture PV 

system 
Etrans: Primary energy demand to transport materials used 

during the life cycle 
Einst: Primary energy demand to install the system 

EEOL: Primary energy demand for end-of-life 
management 

Eagen: Annual electricity generation 
EO&M: Annual primary energy demand for operation and 

maintenance  
nG:  Grid efficiency, the average primary energy to 

electricity conversion efficiency at the demand side 
 

The EROI is a dimensionless ratio representing how 
many times over its lifetime, the system would generate 
the cumulative energy used in its production; the 
traditional way of calculating EROI is as a function of 
EPBT and its lifetime [15]: 
 
EROI = lifetime / EPBT = T · ((Eagen/nG) – EO&M) / (Emat 
+ Emanuf + Etrans + Einst + EEOL) 
 
3 RESULTS 

 
A detailed life cycle inventory (LCI) was compiled 

from process data supplied by the SunPower Corporation 
corresponding to the production in 2011 of 248,652 
modules of SPR-327NE-WHT-D AR modules with a 
total rated capacity of 81.3 MW. This LCI was cross-
referenced with the crystalline Si LCI data in the 
Ecoinvent database and differences were explained and 
documented. The SunPower cell LCI includes some 
chemicals that are not included in the Ecoinvent database 
and the SunPower solar cells are thinner than the ones 
described in Ecoinvent. 

The life-cycle environmental profiles of the 
SunPower systems were determined on a “cradle to 
grave” basis, in accordance to the IEA LCA guidelines  
[15]. The SunPower cells and modules were compared to 
the two data sets in SimaPro from the Ecoinvent database 
which represent typical values used in published LCA 
estimates; these are: ‘mc-Si’ (based on 1992 LCI data) 
and ‘single-Si’ (based on 2007 LCI data, average of 4 
multi-crystalline and 1 mono-crystalline cell 
manufacturers), referred to here as “Ecoinvent A” and 
“Ecoinvent B”, respectively. 
 
3.1 SunPower cells 

The life cycle assessment impact results for the 
SunPower cells (reference case: Philippines) in 
comparison to the Ecoinvent cells are given in Figure 1. 
This comparative analysis uses the most common 
metrics, namely: Cumulative energy demand (CED) in 
units of megajoules of primary energy [MJp], and global 
warming potential (GWP) in units of kilograms CO2 
equivalent [kg CO2e]. Two estimates are listed for the 
SunPower cell; SunPower_PH corresponds to production 
in the Philippines which is our reference case, and 
SunPower_NO_UCTE corresponds to production of MG-
Si in Norway and average European electricity grid for 
the subsequent stages of production, which are the 
conditions represented in the Ecoinvent cells.  

The functional unit of comparison was one cell, with 
dimensions shown in Table I. 

Calculations for this work were based on specific cell 
and module specifications from SunPower and compared 
to the modules in the Ecoinvent database.  
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