

Photovoltaics Life Cycle Analysis Vasilis Fthenakis

Center of Life Cycle Analysis Earth & Environmental Engineering Department Columbia University and

National Photovoltaic (PV) EHS Research Center Brookhaven National Laboratory

www.clca.columbia.edu www.pv.bnl.gov

The Life Cycle of PV

Sample Metrics of Life-Cycle Performance

- Energy Payback Times (EPBT)
- Greenhouse Gas Emissions (GHG)
- Toxic Gases & Heavy Metal Emissions
- Risk Indicators

Energy Payback Times (EPBT) 2004-2005 Status: Crystal Clear & BNL Studies

-Alsema & de Wild, Material Research Society, Symposium vol. 895, 73, 2006 -deWild & Alsema, Material Research Society, Symposium vol. 895, 59, 2006 -Fthenakis & Kim, Material Research Society, Symposium vol. 895, 83, 2006 -Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006

Energy Payback Times Effect of Si Slurry Recycling

-Alsema, de Wild & Fthenakis, 21st EU-PV Conference, Aug., 2006 -Fthenakis & Alsema, Progress in Photovoltaics, 14, 275, 2006

Life Cycle GHG Emissions – Europe

Insolation: 1700 kwh/m2-yr

Alsema & de Wild, Material Research Society, Symposium vol. 895, 73, 2006 deWild & Alsema, Material Research Society, Symposium vol. 895, 59, 2006 Fthenakis & Kim, Material Research Society, Symposium vol. 895, 83, 2006 Fthenakis & Alsema, Progress in Photovoltaics, Accelerated Publication, 14, 275, 2006

Life Cycle GHG Emissions –Comparison with Conventional Technologies

Emissions of Heavy Metals -Focus on Cadmium from CdTe PV

- 1. Mining/Smelting/Refining
- 2. Purification of Cd & Production of CdTe
- 3. Manufacture of CdTe PV modules
- 4. Utilization of CdTe PV modules
- 5. Disposal of spent CdTe PV modules

Stage 1. Cd Flows in Zn Mining, Smelting & Refining

Ethenakis and Wang., Emission Factors in the Production of Materials Used in Photovoltaics, **20th EURPVSEC**, 8BO.5.2, 2005

Stage 4. Operation of CdTe PV Modules

Zero emissions under normal conditions

(testing in thermal cycles of -80 C to +80 C)

No leaching during rain from broken or degraded modules

Steinberger, Progress in Photovoltaics, 1997

Negligible emissions during fires

Ethenakis, Fuhrman, Heiser, Lanzirotti, Fitts and Wang, Progress in Photovoltaics, 2005

CdTe PV sample for Fire-simulation Experiments

Front (Substrate) Glass

Soda Lime Glass - common window glass

Front Contact

TCO (transparent conducting oxide) – a thin layer of Tin Oxide is applied to the front glass. This is the same material used in low E-coating (insulator) for common insulating glass.

Semiconductor

CdS (Cadmium Sulfide) – window layer CdTe (Cadmium Telluride) – absorber layer

Metal Conductor

Thin stack of metals that create the back contact

EVA

EVA (Ethyl Vinyl Acetate) – an adhesive, encapsulant material

Back (Cover) Glass Soda Lime Glass – common window glass

11

CdTe PV Fire-Simulation Tests: XRF Analysis

Fthenakis, Fuhrman, Heiser, Lanzirotti, Fitts and Wang, Progress in Photovoltaics, 2005

XRF-micro-probing -Cd & Zr Distribution in PV Glass Unheated Sample -Vertical Cross Section

XRF-micro-probe -Cd Distribution in PV Glass 760 °C, Section taken from middle of sample

XRF-micro-probe -Cd Distribution in PV Glass 1000 °C, Section taken from middle of sample

XRF-micro-probing -Cd Distribution in PV Glass 1000 °C, Section taken from right side of sample

Stage 5. Recycling of Cd and Te from Spent CdTe PV Modules

CdTe Recycling: Separation of Te and Cd

Fthenakis and Wang, Patent Application # 60/686,911, 2, 2005

Atmospheric Cd emissions from the Life-Cycle of CdTe PV Modules – Direct Emissions

Process	Cd Emissions (g /GWh)
1. Mining/Smelting of Zn	3.2 x 10 ⁻⁴
2. Purification/CdTe Production	1.5 x 10 ⁻²
3. Module Manufacturing	3.9 x 10 ⁻³
4. Operation (accidents)	6.0 x 10 ⁻⁵
5. Recycling	-
TOTAL Life-Cycle Emissions	0.02

Total Life-Cycle Cd Air emissions in CdTe PV

Life-Cycle Cd Emissions from Electricity Use (European electricity grid)

Cd Use in CdTe PV Production

Cd is produced inevitably as a byproduct of Zn production and if not **used**, it may be **discharged** into the environment

- Above statement is supported by:
 - US Bureau of Mines reports
 - Rhine Basin study (the largest application of Systems Analysis on Industrial Metabolism)

Cd Flow in the Rhine Basin

Source: Stigliani & Anderberg, Chapter 7, Industrial Metabolism, The UN University, 1994

Rhine Basin: Cd Banning Scenario

Source: Stigliani & Anderberg, Chapter 7, Industrial Metabolism, The UN University, 1994

Cd Use & Disposal in the Rhine Basin: The effect of banning Cd products

"So, the ultimate effect of banning Cd products and recycling 50% of disposed consumer batteries may be to shift the pollution load from the product disposal phase to the Zn/Cd production phase. ... it indicates that **if such a ban were to be implemented, special provisions would have to be made for the safe handling of surplus Cd wastes generated at the Zn refineries!**

One possible option would be to allow the production and use of Cd-containing products with inherently low availability for leaching. The other option, depositing the Cd-containing wastes in safely contained landfills, has other risks"

Source: Stigliani & Anderberg, Chapter 7, Industrial Metabolism, The United Nations University, 1994

Risk Analysis in a Life Cycle Context

Hazardous Substances in PV Module Manufacturing

Substance	Source
Arsine	GaAs MOCVD
Boron Trifluoride	Dopant
Diborane	a-Si dopant
Hydrochloric acid	Cleaning agent – c-Si
Hydrogen Fluoride	Etchant – c-Si
Hydrogen Selenide	CIGS selenization
Hydrogen Sulfide	CIS sputtering
Phosphine	a-Si dopant
Hydrogen	a-Si deposition/GaAs
Silane	a-Si deposition
Trichlorosilane	Precursor - c-Si

Method for Estimating Accidental Risks

We examined the risks related to the production, distribution and use of each substance in the whole U.S. industry based on the database of the EPA Risk Management Program (RMP)

Number of Reported Events in the U.S. US-EPA RMP Database (1994-2004)

Estimated PV Risks by Chemical

Derived from US-EPA RMP Database (1997-2004)

Insolation = 1800 kWh/m2/yr; performance ratio = 0.8.

Comparison of Risk Estimates

Comparisons of Estimated Maximum Consequences

- A Life Cycle Framework is necessary for a complete description of the Sustainability of Energy Technologies
- Cadmium and other heavy metal emissions are negligible in comparison to the heavy metal emissions from the fossil power plants that PV will displace
- Modern PV Technologies have Low Energy Payback Times and low GHG emissions
- PV is also much safer than conventional electricity generation technologies

www.clca.columbia.edu www.pv.bnl.gov

