Dry Reforming of Landfill Gas Using Precious Metal Catalysts

Tracy Jackson, Dr. Marco Castaldi – Department of Earth and Environmental Engineering – Columbia University

Landfill Gas – Production and Composition

Landfill Gas – Production and Composition

About 50% CH₄ and 50% CO₂
Other important components: 21 ppmv Hydrogen Sulfides

Previous Reforming Work

• Steam Reforming
 – CH₄ + H₂O → CO + 3 H₂ \(\Delta H = + 226 \text{ kJ/mol} \)
 – Most important industrial process to make syn gas
 – Problems:
 • Superheated steam is expensive
 • Water-gas shift reaction produces CO₂
 • H₂-to-CO ratio too high for some downstream processes
• Partial Oxidation of Methane
 – CH₄ + ½ O₂ → CO + 2 H₂ \(\Delta H = - 44 \text{ kJ/mol} \)
 – Problem: At the stoichiometric CH₄-to-O₂ ratio there is significant carbon formation on catalysts other than noble metal catalysts
• Dry Reforming
 CH₄ + CO₂ → 2 CO + 2 H₂ \(\Delta H = + 261 \text{ kJ/mol} \)
• Combinations of the above

Dry Reforming

Order of reactivity for precious metal catalysts:
Ru, Rh, Ni, Re>> Ir > Pt > Pd
Other catalysts that have been investigated: Fe, Co, Ca, Mn

Reaction is thermodynamically favored above 913 K

Problems:
Carbon deposition
Energy intensive (more endothermic than steam reforming)

Conclusions:

Platinum
• Reduction enhances the production of syn gas and decreases the rate of deactivation
• The higher the reduction temperature, the more syn gas produced
• There is a period of interesting weight change followed by a drastic weight increase for the 900°C tests
• The weight increase on the catalyst reformed at 900°C is due to deactivation by carbon deposition
• The support itself has some sort of catalytic properties at high temperatures

Gold
• Sinters at 400 before reforming reaction can begin

Current Work:

BET analysis
Kinetic Analysis
Increasing CO₂ flow to see effects on Carbon deposition
Catalyst regeneration through Carbon burn-off

Acknowledgements:

Thank you to Engelhard Corporation and Dr. Robert Farraruto for providing the catalysts used during this investigation as well as discussion and insight.