Keppel Seghers
- Keppel Corp
- Keppel Seghers Thermal Division

Water-Cooled Grate
- principles
- cases: Modena (Italy) + Amsdorf (Germany)

Boiler Prism
- principles
- cases: AZN (the Netherlands) + Modena (Italy)
Global foot-print in 25 countries and 20,000 employees
Revenue of US$ 4 billion and profitable
Commitment to high level of corporate governance
Offshore & Marine

Shipyard in Brownsville, Texas
Environmental Technology

Atlanta, Georgia
Keppel SEGHERS

Thermal

WtE

Biosolids

Water
Biosolids Drying & Pelletizing

Baltimore, MD
Fluidized bed combustion

Spokane, WA
WtE References

- Antwerp ISVAG Belgium 2x288 ton/day MSW
- Mannheim Germany 1x600 ton/day MSW
- Ohtsuki Japan 2x54 ton/day MSW
- NanShan Shenzhen China 2x400 ton/day MSW
- Orebro Sweden 1x200 ton/day Industrial Waste
- Bao An Shenzhen China 3x400 ton/day MSW
- Collefero Italy 4x278 ton/day RDF
- Modena Italy 1x540 ton/day MSW
- Suzhou China 3x350 ton/day MSW
- Changshu China 2x330 ton/day MSW

- Antwerp INDAVER Belgium 1x533 ton/day Industrial + MSW
- Kwan-Ju Korea 2x200 ton/day MSW
- Ui-JeongBu Korea 2x100 ton/day MSW
- Asslar Germany 2x44 ton/day MSW
- Antwerp INDAVER Belgium 2x319 ton/day Industrial + MSW
- Ghent IVAGO Belgium 2x139 ton/day MSW
- MokDong Seoul Korea 2x200 ton/day MSW
- Kempten Germany 1x194 ton/day Biomass
- Amsdorf Germany 1x186 ton/day RDF
WtE References

Location: Shenzhen, China
Capacity: 5 x 400 TPD
Start-up: 2004
Keppel Seghers
 • Keppel Corp
 • Keppel Seghers Thermal Division

Water-Cooled Grate
 • principles
 • Examples: Modena, Italy + Amsdorf, Germany

Boiler Prism
 • principles
 • cases: AZN (the Netherlands) + Modena (Italy)
Grate Type as function of Heating value

SEGHERS multi-stage grate

- 2,600 – 6,600 Btu/Lb (air-cooled)
- 4,300 – 7,700 Btu/Lb (Hybrid)
- 6,500 – 12,900 Btu/Lb (water-cooled)

from 2,600 to 12,900 Btu/Lb
Main Characteristics

- Absorbed power ≈ 3% total thermal load
- Cooling water
 - temperature inlet 60 - 80 °C
 - temperature outlet 90 - 110 °C
 - pressure inlet 3 - 8 bar
- Long lifetime > 32,000 h
- Primary air for incineration only, not for grate cooling
- Closed cooling water circuit
- Long elements with few connections
- Negligible grate siftings (< 1%)
- Can be retrofitted on any grate type
Location: Modena, Italy

Capacity: 1 x 717 TPD

Heating values (HHV):
 average: 6000 BTU/Lb
 high : 8040 BTU/Lb

Horizontal Boiler (390°C, 50 bar)

Start-up: 2006
Recent projects

Location: Amsdorf, Germany

Owner: Romonta GmbH

Capacity: 1 x 205 TPD

Heating value (HHV):
 average: 6150 BTU/Lb
 high: 7100 BTU/Lb

Horizontal Boiler (400°C, 40 bar)

Start-up: 2004
first year availability: 92.2%
WtE Watercooled Grate Plants
Reference List

<table>
<thead>
<tr>
<th>Place</th>
<th>Client</th>
<th>Waste type</th>
<th>Grate type</th>
<th>Calorific Value (kJ/kg)</th>
<th>No. of Lines</th>
<th>Capacity (tonnes/day) per Line</th>
<th>Thermal Power (MWth)</th>
<th>Start-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modena (Italy)</td>
<td>Meta</td>
<td>RDF</td>
<td>Watercooled</td>
<td>12.550</td>
<td>1</td>
<td>648</td>
<td>78</td>
<td>2006</td>
</tr>
<tr>
<td>Amsdorf (Germany)</td>
<td>Romonta GmbH</td>
<td>RDF</td>
<td>Watercooled</td>
<td>13.000</td>
<td>1</td>
<td>186</td>
<td>28</td>
<td>2004</td>
</tr>
<tr>
<td>Örebro (Sweden)</td>
<td>SAKAB Sydkraft</td>
<td>Industrial Waste Watercooled / Aircooled</td>
<td>11.800</td>
<td>1</td>
<td>300</td>
<td>41</td>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>Colleferro II (Italy)</td>
<td>Lurgi</td>
<td>RDF</td>
<td>Watercooled</td>
<td>15.000</td>
<td>1</td>
<td>278</td>
<td>57.4</td>
<td>2003</td>
</tr>
<tr>
<td>Colleferro I (Italy)</td>
<td>Lurgi</td>
<td>RDF</td>
<td>Watercooled</td>
<td>15.000</td>
<td>1</td>
<td>278</td>
<td>57.4</td>
<td>2002</td>
</tr>
<tr>
<td>Terni (Italy)</td>
<td>Lurgi</td>
<td>RDF</td>
<td>Watercooled</td>
<td>15.000</td>
<td>1</td>
<td>278</td>
<td>57.4</td>
<td>2002</td>
</tr>
<tr>
<td>San Vittore (Italy)</td>
<td>Lurgi</td>
<td>RDF</td>
<td>Watercooled</td>
<td>15.000</td>
<td>1</td>
<td>278</td>
<td>57.4</td>
<td>2001</td>
</tr>
</tbody>
</table>

⇒ total number of operating hours: + 120,000

100% availability of all WC grates
Keppel Seghers
 • Keppel Corp
 • Keppel Seghers Thermal Division

Water-Cooled Grate
 principles
 cases: Modena (Italy) + Amsdorf (Germany)

Boiler Prism
 • principles
 • cases: AZN (the Netherlands) + Modena (Italy)
HT Corrosion: Definition

25 - 200°C
‘Dewpoint Corrosion’

200 - 450°C
‘Chlorine Corrosion’

450 - 600°C
‘Chlorine - Sulphate Corrosion’

> 600°C
‘Sulphate Corrosion’

Boiler Corrosion

Gas
N₂, O₂, H₂O, CO, HCl, SO₂

Solid
NaCl, KCl, ...

Liquid
KCl / FeCl₂, KCl / ZnCl / PbCl₂, ...

HT Corrosion

. 200°C < T_{metal} < 450°C
 (max. 550°C → sulphate corrosion gains importance)
. primarily chlorine corrosion
. relevant during normal operation
Less corrosion if:

1. early sulphatisation is promoted
 (low T_{FG}, good mixing, sufficient oxygen & S available)

2. impact velocity & FG recirculation zones are minimised / avoided
 (uniform flow pattern & well behaved transition 1st - 2nd pass)

3. hot spots are avoided
 (good mixing, stable process, homogeneous waste mix)

4. volatilisation of salts is limited
 (low $T_{furnace}$; seek reasonable burnout; operate a ‘soft’ fire)

5. chlorine contents of the waste is limited
 (max. allowable Cl-contents ~ S, Na, K, Pb, Zn, Si ; Cl/S-ratio!)

6. flue gases & fly ash are burnt out completely
 (avoid local lack of O_2 & local production of heat)
Top view SEGHERS Boiler Prism
Seghers Boiler Prism
View on Prism after 9,000 h operation
WtE Prism Plants
Reference List

<table>
<thead>
<tr>
<th>Location</th>
<th>Client</th>
<th>Waste type</th>
<th>Grate type</th>
<th>Calorific Value (kJ/kg)</th>
<th>No. of Lines</th>
<th>Capacity (tonnes/day) per Line</th>
<th>Thermal Power (MWth)</th>
<th>new / retrofit</th>
<th>Steam Parameters (°C / barg)</th>
<th>Start-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modena (Italy)</td>
<td>Meta</td>
<td>RDF</td>
<td>WC</td>
<td>12.550</td>
<td>1</td>
<td>648</td>
<td>78</td>
<td>new</td>
<td>390 / 50</td>
<td>2006</td>
</tr>
<tr>
<td>Mannheim (Germany)</td>
<td>MVV</td>
<td>MSW</td>
<td>AC</td>
<td>9.600</td>
<td>1</td>
<td>600</td>
<td>67</td>
<td>new</td>
<td>268 / 47</td>
<td>2003</td>
</tr>
<tr>
<td>Moerdijk (Holland)</td>
<td>AZN</td>
<td>MSW</td>
<td>WC</td>
<td>11.000</td>
<td>3</td>
<td>636</td>
<td>81</td>
<td>retrofit</td>
<td>400 / 100</td>
<td>2003</td>
</tr>
<tr>
<td>Bonn (Germany)</td>
<td>MVA Bonn</td>
<td>RDF</td>
<td>AC</td>
<td>10.100</td>
<td>3</td>
<td>250</td>
<td>29</td>
<td>retrofit</td>
<td>400 / 40</td>
<td>1997</td>
</tr>
</tbody>
</table>

(1) : AC : Air Cooled / WC: Water-Cooled

⇒ combined operating experience: + 25 years
Case 1: AZN (the Netherlands)

Technical Data

- 3 x 700 TPD @ 5200 BTU/Lb
- steam at 1,450psi, 750 F
- start-up in 1997

Problems

- high flue gas temperature at inlet 2nd pass (1740 F)
- severe corrosion (roof, EVA, SH), lifetimes:
 - eva screen < 2 yrs
 - final SH < 3,5 yrs
 - frequent unplanned shut-downs
- high maintenance & repair costs
- excessive slagging (grate + SA-zone)
- availability < 7,500 hrs
Retrofit of AVI AZN-Moerdijk, Holland
Case 1: AZN: Performance Validation 1

- 8 acoustic transceivers (AGAM)
- 5.2 m above SEGHERS prism
- Implemented on all 3 lines
- 22 paths \Rightarrow 22 avg. temperatures
- Cycle time: 60 - 70 sec.
- On-line 2D picture (CR)
- www.budi.de/produkte/agam
Case 1: AZN: Performance Validation 1: Results

Standaarddeviatie 15-min. gemiddelde van 13 padtemperaturen AGAM
lijn 1 & 3 op 30 juli 03

line 1 (no prism)
line 3 (with prism)
Case 1: AZN: Performance Validation 1: Results

Less corrosion if:

1. early sulphatisation is promoted
 (low T_{FG}, good mixing, sufficient oxygen & S available)

2. impact velocity & FG recirculation zones are minimised / avoided
 (uniform flow pattern & well behaved transition 1st - 2nd pass)

3. hot spots are avoided
 (good mixing, stable process, homogeneous waste mix)

4. volatilisation of salts is limited
 (low $T_{furnace}$; seek reasonable burnout; ‘soft’ fire)

5. chlorine contents of the waste is limited
 (max. allowable Cl-contents ~ S, Na, K, Pb, Zn, Si ; Cl/S-ratio!)

6. flue gases & fly ash are burnt out completely
 (avoid local lack of O_2 & local production of heat)
• Corrosion rate measurements over 2 years indicate a decrease in wall thickness loss by a factor 5 - 10.

• The following additional benefits were observed:
 • 8% increase in throughput
 • 50% increase in ‘reisezeit’
 • 6% increase in availability
 • 14% decrease in maintenance costs
 • 54% decrease in natural gas consumption
 • 29% decrease in ammonia consumption

⇒ Pay Back Time of 3,1 yrs
Case 2: Modena (Italy)
Keppel Seghers
 • Keppel Corp
 • Keppel Integrated Engineering
 • Keppel Seghers Technology Portfolio
 • Keppel Seghers Thermal Division

Water-Cooled Grate
 • principles
 • case studies: Modena (Italy) + Amsdorf (Germany)

Boiler Prism
 • principles
 • case studies: AZN (the Netherlands) + Modena (Italy)

R&D Focus
• increased energy efficiency (electrical, CHP)

• reduction of boiler side corrosion

• optimised combustion concept
 (reduction pollutant load through primary measures)

• improve cost-effectiveness of flue gas cleaning components

• integrated flue gas cleaning components

• increase residue quality & re-use potential (ash & APC residues)

• novel applications for FB systems
Thank You