Numerical Modeling of Pollution Formation in WTE Reactors using CFD
Alex Frank & Marco J. Castaldi

Background

Limited WTE gas phase pollution modeling exists in the WTE industry
Emissions reductions are usually based on field observations with little consultation of numerical models
Modeling usually separates bed solid phase combustion and gas phase reactions
Limited modeling of coupled solid/gas phase modeling exists
Current modeling has limited capability in predicting Nox formation, a very important waste product

![Figure 1: Covanta WTE Emissions vs. EPA MACT Limit %](image)

With ever increasing emissions standards as well as the increase in WTE energy generation around the world, understanding of pollution formation in operational systems is necessary to improve existing and new WTE systems.

Research Plan for Modeling

Utilize existing WTE geometry and data of pollutants emitted
Leverage CFD to predict pollution formation

![Figure 2: Schematic of WTE Plant](image)

Calibrate CFD model to measured data in order to ensure accuracy of modeling

Develop reaction mechanism based on known inputs to data-match Nox, Particulate, CO, CO2, and SO2 emissions

\[C_{x}H_{y}O_{z} \cdot xH_{2}O + \text{air} \]

Once modeled and predicted values agree, alternate geometries and configurations will be studied in order to provide greater emissions reductions in the future