Mitigating Chloride Corrosion in WTE Superheater Tube Alloys

Timothy Sharobem¹, Marco J. Castaldi², Nickolas J. Themelis¹

¹Columbia University, Department of Earth and Environmental Engineering, New York, NY
²City College of the City University of New York, Department of Chemical Engineering, New York, NY

Project Motivation

Chlorides Affect WTE Superheater (SH) Corrosion
MSW contains between 0.4-0.7 wt% chlorine. This fraction is liberated from waste during combustion in the form of HCl, Cl₂, and metal chlorides which can react with, deteriorate heat transfer surfaces.

Chlorides have been largely attributed to the corrosion observed in WTE superheater tubes.

WTERT-US survey: Boiler maintenance costs WTE plants on average $4 per short ton combusted¹ or ~6% of gate fee

Some Potential Solutions to Reduce Cl Corrosion
- Design boilers, SH tubes with alloys, overlays, or coatings with Cl resistant materials
- Investigate sorbents to capture Cl compounds
- Additives which modify tube deposits to more corrosion resistant (e.g. sulfur-containing additives)

Novel approach for reducing Cl corrosion via SO₂ recirculation, by Gotaverken Miljö² [WTERT 2012 presentation]

Corrosion Testing

Current Research Questions
- How are SH tube alloys affected by chloride deposits? What are the probable corrosion mechanisms?
- What types of alloys provide protection against high temperature corrosion of chlorides?
- What is the effect of the SO₂/HCl ratio on alloys under chloride deposits?
- What is/are the most cost effective approaches to mitigating Cl corrosion in WTE boilers?

Experimental Approach

1. Coupon Cutting and Cleaning
 Coupons cut from SH alloys, 3.2 cm² area

2. Furnace Tests
 Isothermal testing, under synthetic WTE flue gas

3. Coupon, Deposit Characterization
 XRD, SEM-EDS

4. Corrosion Rate Assessment
 Rate calculated from mass loss, in accordance with ASTM method G1-03

Testing Conditions
- Metal temperatures: 450-550°C (842-1022°F);
- Gas Composition: 8% O₂, 12% CO₂, 15% H₂O; 800 ppmv HCl; SO₂ 80-800 ppmv; N₂ balance, 500 SCCM, Deposit NaCl chosen as chloride surrogate, deposit on coupon of 4.0 mg/cm² ± 10%

Results and Discussion

Effect of Chloride Deposit

Carbon Steel Fe-0.07 C
Stainless Steel Fe-17.3Cr-13.1Ni

NO Deposit | Deposit
NaCl layer significantly accelerate corrosion layer formed unto c-stone, stainless steel over 24 hours by about an order of magnitude at 500°C (932°F)

Potential Effect of Sulfating Chloride Deposits

Replacing chlorides with sulfates, substantially reduces corrosion layer at 500°C (932°F)

Effect of Alloy Composition on Chloride Resistance

Trends with the SO₂/HCl Ratio

Carbon Steel Fe-0.07 C, 500°C

Increasing the SO₂/HCl to elevated levels above typical operation range of 0.1-0.3 range suppresses formation of corrosion for c-stone at 500°C (932°F)

Effect of Alloy Composition on Chloride Resistance

Carbon Steel Fe-0.07 C
Stainless Steel Fe-17.3Cr-13.1Ni

Replacing chlorides with sulfates, substantially reduces corrosion layer at 500°C (932°F)

Conclusions

- Chloride deposits considerably accelerate alloy corrosion under superheater conditions versus sulfate deposits or under WTE flue gas alone
- Increasing the SO₂/HCl ratio can suppress the accelerated corrosion due to chloride deposits for carbon and stainless steels
- Increasing the concentration of certain alloying elements, in particular Ni, W, Mo can achieve better SH chloride corrosion performance
- Future work will investigate economic impact of alloying choice versus additives

References
2. Sven Andersson Presentation, WTERT 2012

The authors acknowledge WTERT for supporting this work.