RESOURCE RECOVERY FROM THE ELECTRONIC WASTE OF MEXICO
Viability and Obstacles

By
José Ignacio Denogean M.

Advisor: Dr. Athanasios Bourtsalas, Columbia University
Co-Advisor: Dr. Nickolas J. Themelis, Columbia University

Submitted in partial fulfillment of the requirements for
M.S. degree in Earth Resources Engineering
Department of Earth and Environmental Engineering
Columbia University
August 2016

Research sponsored by:

COLUMBIA UNIVERSITY
EARTH ENGINEERING CENTER
RESOURCE RECOVERY FROM THE ELECTRONIC WASTE TREATMENT OF MEXICO
by José Ignacio Denogean M.

EXECUTIVE SUMMARY

Mexico is at the beginning of the clean and renewable energy race. The Energy Reforms were instituted only in 2014 when the new regulatory governmental entities began their work. Nonetheless, they are already working in benefit of new energy companies. There is indeed a very strong basis for a new order and reform, but there are still some areas that have only just begun to get attention.

Current waste management practices are a clear example. There are very few places in Mexico where waste is separated correctly; most places barely reach an Organic/Inorganic distinction of waste. This happens mainly because there has not been a national effort to provide the infrastructure and logistics for proper waste separation. Also, bureaucracy and corruption from waste pickers’ and informal recyclers’ syndicates make any effort become stagnant. In recent years, the problem has aggravated because of the constant increase in population; particularly in the case of Electronic Waste (E – Waste). Its amounts have increased faster than other wastes’ because of advancements in technology, mass production and consumerism (Only last year, more than one million tons of E – Waste were generated). Because of this, it can pose an even bigger threat than hazardous wastes do.

This study found that there are no national regulations for E – Waste treatment; only two general environment and waste laws mention it in some form. Additionally, it was found that the middle/upper class is aware of the situation and has started some private initiatives. However, their progress has been little and E – Waste is not yet seen as a commodity in other industrial sectors.

It was discovered that Mexico’s copper smelting capacity is higher than 500,000 tons/yr, focused mainly on a few companies. Also, it was estimated that around 70,000 tons/yr of copper could be recovered if E – Waste was sent to these smelters; their capacity is enough to incorporate them as part of their feedstock. This in fact would make a positive impact on the Mexican copper market since the potential amount of recovered copper constitutes almost 14% of Mexico’s smelting capacity.

This study examined the feasibility of creating the basic first steps for the sustainable management of E – Waste. This is a problem that, although not directly related to the renewable energy efforts in Mexico, needs to be addressed in parallel to these efforts. This study summarizes the actual status of Mexican regulation and public perception regarding E-Waste, compares Mexican development with other countries (e.g. Japan has electronic device specific legislations), and suggests the creation of links between the copper smelting industry of Mexico and electronic recyclers, for the recovery of copper, precious and other metals that are present in E-Waste and are soluble in molten copper.
ACKNOWLEDGMENTS

I would like to start by thanking my advisors: Dr. Nickolas J. Themelis and Dr. Athanasios Bourtsalas for all their continuous support and guidance through all my M.S. studies. Their knowledge and expertise form the structure for this project. Thanks also to Liliana Themelis for her warmth and helping hand.

I would like to thank all the companies and people that were kind enough to provide me with the necessary information for this research; more than the facts given, it's their enthusiasm for a better Mexico that is best appreciated.

I am grateful to my sponsors CONACYT, FUNED and FIDERH for providing the funding that made possible my studies at Columbia University.

Finally, I would like to thank God, for whom everything is possible, and my family and friends for their unwavering encouragement.
TABLE OF CONTENTS:

1. Introduction .. 8
 1.1. Aim and Objectives ... 8
 1.2. The Electronic Menace ... 9
 1.3. Global generation of E–Waste ... 10
 1.4. Classification and Composition of E–Waste ... 15
 1.4.1. Examples of Metal content of E–Waste ... 16
 1.5. Hazardous materials in E–Waste .. 19

 2.1. The Importance of Treating E–Waste ... 21
 2.1.1. Extraction of Resources ... 21
 2.1.2. Material Processing and Product Manufacturing ... 21
 2.1.3. Distribution and Use .. 21
 2.1.4. End of Life .. 21
 2.2. Treatment Options .. 22
 2.2.1. Crude Recycling ... 22
 2.2.2. E–Waste Management and Recycling .. 23
 2.3. Global Technologic Status .. 30
 2.4. The economics of managing E–Waste ... 31
 2.4.1. The Consumer ... 32
 2.4.2. The Manufacturer ... 32
 2.4.3. Private Institutions ... 32
 2.4.4. Government ... 32
 2.5. Waste to Energy ... 33
 2.5.1. E–Waste to Energy? .. 34

3. Adjacent Factors .. 35
 3.1. Legislative Pressures ... 35
 3.2. Certifications .. 36
 3.2.1. ISO 14001 ... 36
 3.2.2. Recycling Industry Operating Standard® (RIOS) ... 36
 3.2.3. Responsible Recycling (R2) ... 37
 3.2.4. e-Stewards® Certification .. 37
 3.2.5. WEEE LabEx ... 38
| 3.3. | Successful E – Waste Treatment Initiatives | 38 |
| 3.3.1. | **Stena Metall Group AB** | 38 |
| 3.3.2. | **Umicore NV** | 39 |
| 4. | **Mexican Reality** | 41 |
| 4.1. | Government Institutions and Regulations | 41 |
| 4.2. | Private and Governmental Programs | 44 |
| 4.2.1. | **Recicladora Electrónica** | 44 |
| 4.2.2. | **Recall International** | 44 |
| 4.2.3. | **Secretaría del Medio Ambiente del Distrito Federal (SEDEMA)** | 46 |
| 4.2.4. | **REMSA** | 47 |
| 4.3. | Public Motivation and Actions | 50 |
| 4.4. | Recovery of Metals from E – Waste | 52 |
| 4.4.1. | **Mining and Metallurgy** | 52 |
| 4.4.2. | **Metallurgic Companies in México** | 54 |
| 4.4.3. | **Copper Smelters** | 56 |
| 5. | **Environmental Analysis** | 59 |
| 5.1. | Conservation of natural resources | 59 |
| 5.2. | Hazardous materials reduction | 60 |
| 5.3. | Energy saving | 62 |
| 5.4. | Greenhouse Gases Emissions Reduction | 63 |
| 5.5. | Other Impacts | 64 |
| 6. | **Conclusions** | 66 |
| 7. | **Recommendations** | 67 |
| REFERENCES | 69 |
| APPENDICES | 78 |
| Appendix 1: Mid-Income Status, E – Waste Management Survey Questions | 78 |
| Appendix 2: Examples of Successful E – Waste Treatment Initiatives | 83 |
| Appendix 3: Other Leader Mining and Metallurgic Companies in Mexico | 85 |
LIST OF TABLES
Table 1.1: E – Waste Generation per Habitant and Total... 12
Table 1.2: Material Composition of a Desktop PC (CPU and CRT Monitor).............................. 177
Table 1.3: Composition Percentage of Appliances .. 17
Table 1.4: Toxics substances found in E – Waste and their impacts on human health 199
Table 2.1: Mechanical separation processes based on electric characteristics of materials 25
Table 2.2: Materials that can be separated by an Eddy Current Separator, and their properties 27
Table 3.1: UMICORE N.V. Industries ... 40
Table 4.1: Reciclatrón Categories .. 46
Table 4.2: Reciclatrón Results 2015 .. 47
Table 4.3: E – Waste Management Companies in Mexico .. 49
Table 4.4: Principal Metals Production in Mexico 2014-2015 .. 53
Table 4.5: Copper Smelters of Mexico Using E – Waste ... 57
Table 4.6: Mexico’s Smelting Capacity by Company and E- Waste Copper Potential 58
Table 5.1: Potential Metal Recovery through Hydrometallurgy ... 60
Table 5.2: Estimation of environmental contaminants arising from E-waste disposal or recycling 61
Table 5.3: Potential net energy use arising from E-waste landfilling, combustion, E – Waste recycling, and manufacture of components .. 62
Table 5.4: Comparison of E – Waste GHG Emissions in Mexico in 2010 64
LIST OF FIGURES

Figure 1.1: The World's Worst Electronic Waste Offenders ... 13
Figure 1.2: Disposition of Municipal Solid Waste in various countries .. 14
Figure 1.3: Average WEEE Composition by Weight .. 16
Figure 1.4: Average IT and consumer electronics waste composition ... 16
Figure 1.5: Average composition by mass of major fractions (>0.01%) in small house appliances 18
Figure 1.6: Average composition by mass of major fractions (>0.01%) in Consumer Equipment 19
Figure 2.1: Thematic Concept Map of E – Waste Patent Landscape ... 23
Figure 2.2: Recycling process developed by Ragn-Sells Elektronikåtervinning AB 24
Figure 2.3: Schematic diagram for the Noranda Smelting Processing ... 28
Figure 2.4: Proposed flowsheet for the recovery of precious metals from electronic scrap 29
Figure 2.5: Geographic Map of Sources of E – Waste Patented Innovation .. 31
Figure 4.1: Mexican Regulations that involve E – Waste Management ... 43
Figure 4.2: EcoPoint® .. 45
Figure 4.3: Mobile Carrier Program .. 45
Figure 4.4: REMSA Recovery Process ... 48
Figure 4.5: E – Waste Destination .. 51
Figure 4.6: Disposal Method .. 52
Figure 4.7: Metalogenetetic Map .. 53
Figure 4.8: BCG Matrix for E – Waste Recycling Potential ... 56
1. Introduction

Man’s quest for knowledge has led him to discover an innumerable amount of materials and processes that have helped shape today’s world. Sadly, with the ever growing human population and the uncontrolled use of the planet’s resources, creations that echo man’s amassed intellect now strike back with toxic and hazardous implications. This is why there is a concept that aims to reduce these detrimental consequences and even take advantage of them to continue the path of progress. This concept is called Sustainability, and it encompasses the ability of a generation to sustain itself, without implications that would not allow following generations to do the same. Within Sustainability there is an idea called Circular Economy (MacArthur, 2015); one of its goals establishes that there should be no more waste left by advancement. Every artifact that reaches the end of its main purpose has another one still; to provide the raw materials for new products and services.

This goal is particularly essential in the case of Electronic Waste. E – Waste presents the biggest challenges for proper treatment and disposal among non-hazardous wastes (technology for treatment has to keep up with technology for development). Its amounts increase faster than other wastes’ because of advancements in technology, mass production and consumerism. Also by its amounts in some places, it poses a bigger threat than hazardous wastes. E – Waste is a problem that needs to be addressed now and continuously all around the world; based on the principles of true Sustainability and aiming to reach the goals of Circular Economy (For example; reutilizing all metal residues from the once valuable, but now menacing electronic equipment).

1.1. Aim and Objectives

This thesis aims to identify solutions for the “electronic menace” in Mexico through the analysis of methods used by different countries and its comparison with the situation that Mexico faces. Also, through suggestions to areas of opportunity that may bring the Mexican Republic a step closer to achieving Circular Economy.

In order to pinpoint these solutions, the objectives of this investigation are:

- Provide insight into Mexico’s rapidly growing Electronic Waste (E – Waste) problem in the last decade.
- Provide an overview of the public perception of the problem and the current practices of E – Waste disposal.
- Provide a relation of the regulations and legislations that concern E – Waste, as well as governmental and private initiatives taking place.
- Analyze the possibility of creating a stronger nexus between recovered materials from E – Waste and other trades like the Mining and Metallurgic industries, and in particular Mexican copper smelters.
- Analyze the environmental repercussions of this increasing dilemma in terms of Greenhouse Gas (GHG) Emissions, pollution and resources/energy depletion.
- Offer possible solutions to direct Mexican practices towards a closed loop in the disposal of E-Waste.

1.2. The Electronic Menace

As a general definition, Electronic Waste is any electronic device that has completed its useful lifespan. The Oxford definition for E-Waste is “discarded electronic appliances such as mobile phones, computers, and televisions” (Oxford University, 2015). Because of difference in regulations in different countries, the appliances that receive this name may vary.

In Australia, as well as in the Directive 2012/19/EU of the European Union, E-waste is defined as “Waste Electrical and Electronic Equipment that is dependent on electric currents or electromagnetic fields in order to function properly and equipment for the generation, transfer and measurement of such currents and fields and designed for use with a voltage rating not exceeding 1,000 volts for alternating current and 1,500 volts for direct current (including all components, subassemblies and consumables which are part of the original equipment at the time of discarding)” (Australian Bureau of Statistics, 2013) (European Parliament and Council of the European Union, 2012). This type of discarded materials is classified into (Australian Bureau of Statistics, 2013):

1. Consumer/entertainment electronics
2. Office, information and communications technology
3. Household appliances
4. Lighting devices
5. Power tools except stationary industrial devices.
6. Devices used for sport and leisure including toys

Whereas in Mexico, the Environment and Natural Resources Secretariat (Secretaría de Medio Ambiente y Recursos Naturales, SEMARNAT) and the Ecology and Climate Change National Institute (Instituto Nacional de Ecología y Cambio Climático, INECC) define Electronic Waste as diverse electrical and electronic equipment that has lost its value, and that if not discarded correctly, may pose health and environmental risks (Rojas Bracho, Gavilán García, Alcántara Concepción, & Cano Robles, 2011, pp. 8 - 11). More precisely, the Ley General para la Prevención y Gestión Integral de los Residuos (LGPGIR) Article 9, Section VIII, defines Electronic Residue as “technological waste from the Informatics Industry, from makers of electronic products and from others that after their life is spent, because of their characteristics, require a specific management” (SEMARNAT, 2015).

Some other minor classifications from the mentioned agencies include:

- **E – Waste of Small Appliances**: from small electrical and electronic equipment such as razors, mixers, toasters, coffee machines, cell phones and radios.
- **E – Waste from private households**: from commercial, industrial, institutional and other private sources, which by their nature and amount are similar to private households (Rojas Bracho, Gavilán García, Alcántara Concepción, & Cano Robles, 2011, p. 130).
Since these definitions are similar to the Waste Electrical and Electronic Equipment (WEEE) definition, this study considers the European Directive definition as the one applied in Mexico.

1.3. Global generation of E-Waste

Based on information of the 2014 Monitor for E-Waste from the UNU (Baldé, Wang, Kuehr, & Huisman, 2014), a summary of the world E-Waste treatment policies and current actions for E-Waste management is given below:

- **Africa**
 - Total E-Waste generation was of 1.9 million tons
 - Highest generation per inhabitant was 10.9kg in Seychelles
 - Cameroon and Nigeria have E-Waste related legislations already being enforced
 - Ghana, Ethiopia and Kenya had regulations pending approval
 - In general, the lack of E-Waste management laws through the whole continent has made it very difficult to equip each nation with the adequate infrastructure
 - Most E-Waste gets handled by informal recyclers, so the residues end up stored or in landfills (not sanitary in most cases)
 - With some contradiction, the main import of illegal E-Waste to Africa comes through Ghana and Nigeria
 - Although there is no proper regulation, governments are involved and promote collection campaigns that prevent the waste from ending up uncontrollably dumped

- **America**
 - Total E-Waste generation was of 11.7 million tons
 - Highest generation per inhabitant was 22.1kg in the U.S.A.
 - Costa Rica, Peru, Bolivia and Ecuador have proper recycling legislation
 - Brazil and Chile had regulations pending approval
 - Neither Canada nor the U.S.A. had nationwide legislation, but state and provinces mandates for E-Waste recycling are enforced in more than half the country
 - There are two third party certification systems in the U.S.A.: R2 and E-Stewards
 - Mexico, Costa Rica, Colombia, Peru, Argentina, and Ecuador also have E-Waste management regulations, but as there is no national control, these are only half enforced regionally
 - Brazil and Mexico count with R2 certified facilities
 - Most of the area of opportunity lies in the creation of legal framework, awareness of waste control and certifications

- **Asia**
 - Total E-Waste generation was of 16 million tons
 - Highest generation per inhabitant was 21.5kg in Hong Kong
 - China, India, Japan, Hong Kong, South Korea, Vietnam, Bhutan, Cyprus and Turkey have national e-waste related laws
The Philippines and Jordan had regulation pending approval
China has the spotlight since most of the world’s exported E – Waste is treated there
China has had important growth in waste treatment capacity in the last few years thanks to proper regulation and attentiveness, but the informal sector still plays a fundamental role
Japan is one of the global leaders in E – Waste management since it has appropriate device-specific legislations with proposed recycling targets, evolved collection systems and high quality infrastructure

Europe
- Total E – Waste generation was of 11.6 million tons
- Highest generation per inhabitant was 28.3kg in Norway
- The WEEE Directive is in charge of the uniform legislation for collection and treatment throughout the whole European Union (EU)
- The WEEE Directive has set an 85% collection target for 2019
- Although recycling and reuse is practiced in the developed world, there is still some fraction that is exported to the Balkans for salvage or disposal
- Montenegro, Macedonia, Serbia, Bosnia and Herzegovina enforce E – Waste management regulations
- In general, there is good infrastructure along the EU except in the Balkan Region where there is still work to be done
- Russia and Belarus, Kazakhstan, Armenia and Kirgizstan had no legislation whatsoever, but governments are already starting to place E – Waste management in their agendas

Oceania
- Total E – Waste generation was of 0.6 million tons
- Highest generation per inhabitant was 20.0kg in Australia
- Only Australia has national regulation and the government is responsible for collection and recycling
- Through “The Product Stewardship Act 2011”, Australia has set a target of 80% of recycling in 2020
- New Zealand has no E – Waste management legislation for the foreseeable future; most leftovers are deposited in landfills

Last year the world saw a new record for E – Waste; around 41.8 million tons were discarded. Amounting to a 2 million ton difference from the figures of 2013 (39.8 million tons). According to the United Nations University’s (UNU) “Solving the E – Waste Problem” (STEP) Initiative report, the amount of waste is equivalent to 1.15 million trucks. If these were formed in a straight line, they would go from New York to Tokyo and back (Solving the E – Waste Problem, 2015).

A more detailed outline of E – Waste generation in several regions of the world (extracted from the STEP E – Waste World Map site) is displayed in Table 1.1 (Solving the E – Waste Problem, 2015):
As can be seen in Table 1.1 (Forbes/Business, 2015), the E.U., U.S., and China generated 54% of the total E-Waste in 2014. It is important to bear in mind that the amount of E – Waste per habitant is directly proportional to the Purchasing Power in each country (Purchasing Power may be considered as the goods and/or services that one unit of money can buy).

Here are some other facts regarding the future of E – Waste (Causes International, 2015):

- “The United Nations Environment Programme (UNEP) reported in May 2015 that yearly, 90% of all E – Waste is traded unlawfully…
- By 2017, the volume of discarded e-products worldwide is expected to be 33 per cent higher than in 2012 and weigh the equivalent of eight of the Great Pyramids of Egypt…
- The Environmental Protection Agency estimates that only 15-20% of e-waste is recycled, the rest of these electronics go directly into landfills and incinerators…
- Approximately 80% of e-Waste in the U.S. is exported to Asia.”

An ironic fact is that the world’s most famous countries for recycling policies and environmental awareness, are also the ones with the most per-capita E – Waste originators. Figure 1.1 shows some of the countries numbers (Forbes/Business, 2015).
To have a full appreciation of the global status on waste management and give some perspective as where E-Waste stands on each country, Figure 1.2 (Bourtsalas, 2015) depicts the percentage of recycled/treated from the total generation of waste in a nation.

Figure 1.1: The World's Worst Electronic Waste Offenders

<table>
<thead>
<tr>
<th>Country</th>
<th>Recycled/Treated (kgs per capita)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norway</td>
<td>28.3</td>
</tr>
<tr>
<td>Switzerland</td>
<td>26.3</td>
</tr>
<tr>
<td>Iceland</td>
<td>26.0</td>
</tr>
<tr>
<td>Denmark</td>
<td>24.0</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>23.5</td>
</tr>
<tr>
<td>Netherlands</td>
<td>23.3</td>
</tr>
<tr>
<td>Sweden</td>
<td>22.3</td>
</tr>
<tr>
<td>France</td>
<td>22.2</td>
</tr>
<tr>
<td>United States</td>
<td>22.1</td>
</tr>
<tr>
<td>Austria</td>
<td>22.0</td>
</tr>
</tbody>
</table>
Clear examples that confirm the discussion above are the U.S., China and Russia, where recycling does not reach even 50%. The case of Russia is an alarming one, because not even 10% of its Municipal Solid Waste (MSW) is recycled. These inconsistencies may be attributed to the fact that the cost that surrounds development of equipment for treating E – Waste is too much (in some cases, as it will be seen later), or that there is a lack of incentives and laws to do proper and complete recycling of wastes. On another note, it can be seen that Mexico barely has a 6% recycling rate; an understatement would be to say that it is urgent for it to start improving this situation.

Figure 1.2: Disposition of Municipal Solid Waste in various countries
As discussed earlier, E – Waste is a big problem in today’s world; and if trends and predictions are accurate, it is a problem that will keep growing if its proper management does not keep up. But as with every manufacturing practice, proper “operation and process” of E – Waste cannot be achieved without understanding the raw materials it is composed of and their particular handling.

1.4. Classification and Composition of E – Waste

Through the previous chapter, it could be inferred that in different regions around the world E – Waste is treated, even defined differently. These variances are caused by the technological development, the economic situation and/or the current regulations of the locality. Nonetheless, globalization has provided the means to distribute electronic technology all over the world, and therefore a general depiction of E – Waste’s components can be used.

Among the various types of electronic and electrical devices, the most common groups that can be found are:

1. **IT and Communications Technology**: which include printers, copiers, and circuit boards
2. **Household Appliances**: being the most common refrigerators, washing and drying machines, television sets and microwaves
3. **Consumer Electronics**: starting by the rising number of mobile phones, music players, tablets, batteries, and other gadgets

All electronic appliances consist of several parts made of different materials such as metals (which as may be seen in the following figures make up the majority of the components), plastics, glass, and many other elements. Many of these components are recyclable or may be put to further use as they are not so difficult (or costly) to separate from the initial apparatus they were installed in. Also, some components like mercury, cadmium or lead are considered hazardous and as such, they should be removed and handled accordingly so they do not pose a threat to the environment.

Some examples of these components, provided by the European Environment Agency in 2009 and the UNEP in 2013, are given in Figure 1.3 (Joint Implementation Network (JIN), 2009) and Figure 1.4 (UNEP’s International Environmental Technology Center Branch, 2013):
1.4.1. Examples of Metal content of E – Waste

Specific research was made for the metal content in the three major groups of E – Waste mentioned earlier as it will become pertinent in some of the following chapters in this thesis. The content is exemplified in the tables and figures below:

For **IT and Communications Technology**, with the example of a desktop computer; the material composition is shown in **Table 1.2** (US EPA, 2015). The table was extracted from a Waste Reduction Model Report from the US EPA in March 2015.
Table 1.2: Material Composition of a Desktop PC (CPU and CRT Monitor)

<table>
<thead>
<tr>
<th>Product/Material</th>
<th>Application(s)</th>
<th>% of Total Weight</th>
<th>Weight (kg) Assuming a 31.8kg Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABS(^a)</td>
<td>Monitor Case and other molded parts</td>
<td>8.0%</td>
<td>2.5</td>
</tr>
<tr>
<td>PPO/HIPS(^b)</td>
<td></td>
<td>5.3%</td>
<td>1.7</td>
</tr>
<tr>
<td>TBBPA(^c) (Flame Retardant)</td>
<td></td>
<td>5.7%</td>
<td>1.8</td>
</tr>
<tr>
<td>Glass</td>
<td>CRT Glass/Substrate for PWB's(^d)</td>
<td>22.0%</td>
<td>7.0</td>
</tr>
<tr>
<td>Lead</td>
<td>CRT Glass/Electronic connections</td>
<td>8.0%</td>
<td>2.5</td>
</tr>
<tr>
<td>Steel</td>
<td>CPU case/CRT shield</td>
<td>28.6%</td>
<td>9.1</td>
</tr>
<tr>
<td>Copper</td>
<td>PWB conductor/wiring</td>
<td>6.6%</td>
<td>2.1</td>
</tr>
<tr>
<td>Zinc</td>
<td>Galvanization of CPU case</td>
<td>3.0%</td>
<td>1.0</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Structural components/PWB conductor</td>
<td>9.5%</td>
<td>3.0</td>
</tr>
<tr>
<td>Other</td>
<td>Metals and plastics for disk drives, fasteners and power supplies</td>
<td>3.3%</td>
<td>1.0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100.0%</td>
<td>31.8</td>
</tr>
</tbody>
</table>

As can be seen from the Table 1.2, metals make up a minimum of 55.7% of the whole weight of the computer. This is a significant amount to be considered for recycling or other useful purposes.

In the case of Household Appliances, a division between small and large appliances was used as the example. Extracted from reports of the Office of Resource Conservation and Recovery of the US EPA, and the Waste and Resource Action Programme (WRAP) in the United Kingdom (UK), Table 1.3 (US EPA, 2014) and Figure 1.5 (WRAP, 2012) show the material composition of E – Waste.

Table 1.3: Composition Percentage of Appliances

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Steel</th>
<th>Copper/Brass</th>
<th>Aluminum</th>
<th>Metals Total</th>
<th>Plastic</th>
<th>Glass</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigerator</td>
<td>50%</td>
<td>4%</td>
<td>3%</td>
<td>57%</td>
<td>38%</td>
<td>0%</td>
<td>5%</td>
<td>100%</td>
</tr>
<tr>
<td>Dryer</td>
<td>98%</td>
<td>0%</td>
<td>< 1</td>
<td>98%</td>
<td>< 1</td>
<td>0%</td>
<td>< 1</td>
<td>100%</td>
</tr>
</tbody>
</table>

\(^a\) Acrylonitrile butadiene styrene
\(^b\) Polyphenylene oxide/High-impact polystyrene
\(^c\) Tetrabromobisphenol A
\(^d\) Printed wiring boards
<table>
<thead>
<tr>
<th>Washing machine</th>
<th>53%</th>
<th>4%</th>
<th>3%</th>
<th>60%</th>
<th>22%</th>
<th>0%</th>
<th>18%</th>
<th>100%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dishwasher</td>
<td>50%</td>
<td>0%</td>
<td>5%</td>
<td>55%</td>
<td>30%</td>
<td>0%</td>
<td>15%</td>
<td>100%</td>
</tr>
<tr>
<td>Range Stove</td>
<td>87%</td>
<td>1%</td>
<td>3%</td>
<td>91%</td>
<td>1%</td>
<td>6%</td>
<td>2%</td>
<td>100%</td>
</tr>
<tr>
<td>Air Conditioner</td>
<td>55%</td>
<td>17%</td>
<td>7%</td>
<td>79%</td>
<td>11%</td>
<td>0%</td>
<td>10%</td>
<td>100%</td>
</tr>
</tbody>
</table>

*NF = negligible fraction

Figure 1.5: Average composition by mass of major fractions (>0.01%) in small house appliances

As in the previous example, metals make up most of the composition in Household Appliances. In fact a commercial dryer is 98.00% metal.

Finally, for **Consumer Electronics**, the same WRAP overview was used. The average equipment (including VCR’s, DVD players, loudspeakers, and digital cameras, among others) has metal in more than half of its composition as it may be observed in **Figure 1.6** (WRAP, 2012).
The problem with containing so much metal in its parts is that electronic equipment is frequently exposed to processes of oxidation and corrosion that lead to hazardous leachates that constitute the most dangerous characteristic of E-Waste.

1.5. Hazardous materials in E-Waste
The company Waste Management Incorporated (WM) rounded up some of the principal toxic substances in E-Waste, the equipment that contain them, and the possible health consequences; they are displayed in Table 1.4 (Waste Management Inc., 2013):

<table>
<thead>
<tr>
<th>Toxic Substance</th>
<th>Human Health Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beryllium (Used in springs, relay connections, computer motherboards)</td>
<td>Increased risk of developing lung cancer</td>
</tr>
<tr>
<td>Brominated flame retardants (Used in circuit boards and plastic castings)</td>
<td>Can impact brain function, cause thyroid problems</td>
</tr>
<tr>
<td>Cadmium (Used in laptop batteries, wire insulation, coating for CRT’s, semiconductors, as a plastic stabilizer)</td>
<td>Can lead to kidney damage, development of lung cancer and/or respiratory illness</td>
</tr>
<tr>
<td>Substance</td>
<td>Uses</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>Lead</td>
<td>Used in electrical solder on circuit boards, cathode ray tube (CRT’s), stabilizers in PVC<sup>+</sup> formulations</td>
</tr>
<tr>
<td>Mercury</td>
<td>Used in lights to illuminate flat screen displays, computer batteries</td>
</tr>
<tr>
<td>PVC</td>
<td>Used to insulate wires and cables</td>
</tr>
</tbody>
</table>

These substances have very grave repercussions on human and ecosystem life. It is imperative that they are removed from any process through which they may end up as destroyers; somehow rendering useless the usefulness in their lifetime.

Through these numbers, the dangers E – Waste pose when left unattended and untreated are left clear. It is now prudent to explore the options currently used for proper disposal and the means available for the further utilization of the materials; especially in Mexico where there is not much being done about this issue yet.

⁺ Polyvinyl Chloride

2.1. The Importance of Treating E – Waste
By a quick analysis from the previous chapter, obvious reasons to support E – Waste management can be inferred (like prevention of hazardous components in ecosystems), but some other reasons need a deeper assessment to become tangible. One of such reasons is that waste is a potential commodity; in the case of E – Waste, this conceptualization is explained via its different life stages.

2.1.1. Extraction of Resources
Many of the materials needed to produce some of the consumer electronics we see today on a daily basis are precious and rare metals that are naturally occurring but are not so easy to extract and/or are being depleted faster than they should. These metals are part of the called “Critical Raw Materials” as specified by the European Commission (European Commission, 2016) For example, in the foreseeable future the production of Beryllium (Be) and Chromium (Cr) may turn problematic due to lack of sources for these metals in the world (Backman, 2008). Besides of their depletion, the energy and work needed for their acquirement could be avoided through methods of utilization of E – Waste and Waste to Energy (WTE) processes.

2.1.2. Material Processing and Product Manufacturing
Materials that make up electrical and electronic equipment (EEE) are produced in a series of processes that may leave beneficial byproducts (Lead production by-products are silver, gold, arsenic, antimony, and bismuth (Fthenakis, 2003) for example), but their environmental impact is significant in terms of gaseous emissions and residues of hazardous materials.

2.1.3. Distribution and Use
Impacts from these two aspects of the Life Cycle of EEE have the least pertinence for the End-of-Life management of the finished products. Even so, they are not to be ignored. It is appropriate to mention that through better design and use of recovered materials the lifetime of the products may be increased, thus delaying their disposal. Also through better and more sustainable designs, pollutant and greenhouse gas emissions from some of the EEE (e.g. refrigerators, washing/drying machines) may be reduced. Design even affects the ability to carry more products in a single load; reducing the contamination created by transport.

Caution and care in the use of electronics by the end user extend the life of the equipment; awareness of best disposal practices provides a better End of Life management. It is very important that producers, retailers and even governments get involved in public education toward the use of EEE.

2.1.4. End of Life
The recycling and managing advantages at the End of Life of any EEE are manifold as has been mentioned. Some examples of these advantages not detailed before are:

Public health risks are not only mitigated by the use of recovered and recycled materials as seen throughout this analysis, but also by removing E – Waste from landfills. Since 70% of the hazardous waste in a landfill comes from the heavy metals in EEE, its removal would avoid serious health issues to
waste operators; especially in developing countries (China or India) where there are no proper environmental regulations, nor any adequate infrastructure/equipment for handling toxic materials (Namias, 2013).

There are also economic and sensitive information factors that are worth mentioning. Many of the metals contained in E – Waste are of high value since they are precious like gold and silver, or rare like nickel, cobalt and titanium (Namias, 2013). A profitable industry can be developed from the recovery of these metals since they make up between 40 – 70% of the value of the appliance (Cui & Zhang, 2008). Also, sensitive information of individuals and institutions may be still obtained from their E – Waste, so the proper disposal and management is crucial for the destruction of such information.

2.2. Treatment Options
As it was mentioned in the previous section, the most important part of E – Waste is the metal content (precious and critical metals in particular). For this reason, the best management process is that from which the optimum amount of metals can be recovered and reused. This can mean the reuse of the still operational equipment, the repair of the electronics in an acceptable condition, or the strip-down of the components and recovery of the composing metals and materials. That said, there are many ways to recover constituents of E – Waste, but as it will become clear during this section, not all current techniques are efficient or safe.

2.2.1. Crude Recycling
It is a depressing fact, but many developed countries export their E – Waste illegally to developing countries because it is cheaper to process the materials in Asian or African countries than it is in the exporting nation. In these developing countries is where “backyard activities” take place. These include many unsanitary, unsafe and environmentally polluting activities like open incineration, simple smelting, and cyanide leaching. Also, there is an immense waste of resources during these processes and the recovery yield is too low (Hicks, Dietmar, & Eugster, 2005).

Sadly, there are many reasons that make Crude Recycling an appealing option in developing countries:

- “In developing and industrializing countries waste is viewed as a resource and income-generating opportunity.
- There is a general reluctance to pay for waste recycling and disposal services, particularly when consumers can make some money by selling their old and broken appliances.
- Waste collection and disposal services in developing countries cost a higher proportion of the average income than in developed countries.

There is lack of awareness among consumers, collectors and recyclers of the potential hazards of WEEE, crude ‘backyard’ recycling and other disposal practices.” (Hicks, Dietmar, & Eugster, 2005), (Kang & Shoenung, 2005)
2.2.2. **E – Waste Management and Recycling**

To achieve efficient recycling of E-waste, specific and complex technology has to be developed and used in the recovery process. Figure 2.1 below, provided by ThemeScape® and the World Intellectual Property Organization, shows the patents for currently developed technologies for the recovery of specific components found in E – Waste (White & Singh Gole, 2013).

![Thematic Concept Map of E – Waste Patent Landscape](image)

Figure 2.1: Thematic Concept Map of E – Waste Patent Landscape

For the complete extraction of these components via recycling, there are several steps to follow as it will be described in this section. The equipment design needs to consider the previous and subsequent stages of the process during dismantling and separation.

Collection

Collection of E – Waste is relatively easy and does not necessarily involve a lot of technology. It is usually done by the end user of the equipment at a household or company. The right way to provide an optimum collection is by separating all electronics from other types of waste and placing them in a sturdy container to avoid pieces to fall off. If the waste is not picked up by the municipality, collection of E – Waste can be done by various organizations; some private which may be non-profit or profit from waste companies that have their own recycling programs. Companies that invest in collection of E – Waste range from small manufacturers of electronics to large waste management companies. Neighborhoods where recycling is not customary yet, usually conduct events to collect E – Waste from time to time.

The next step is the identification of reusable equipment or parts of equipment. In some cases, the discarded electronic is just outdated but still functional; it can be donated to charities or...
sold on secondary markets. It is important to note that if the equipment contains sensitive information (for example from a banking or medical institution), this needs to be deleted permanently before the appliance is used again. Most E–Waste recycling companies perform this operation the moment they receive the apparatuses, even though the end user should be responsible for this operation before disposal.

Disassembly

E–Waste is taken apart into its larger components for easier handling and further processing. This way, hazardous materials are identified, as well as valuable and reusable materials. Figure 2.2 (Cui & Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, 2003) shows a simple diagram of disassembly) (Ragn-Sells Elektronikåtervinning AB, 2000).

![Disassembly Diagram](image)

Physical Separation

After the recovery of the reusable pieces, the separation of the composing materials is next. Some materials like batteries, plaques, or wires may be extracted by hand. This is the first step where technology starts to really get involved comes up; reduction. Reduction in particle size is essential for an ideal sequence of salvaging. It is achieved by shredders, and these must be of particularly high quality in order to rip though the metal components of the electronic equipment. Finally, advanced sorting techniques are applied to set materials apart into glass, plastics, base metals and precious metals waste streams.

A detailed separation by physical characteristics of the components is carried out. The separation processes may include very simple shape separation or magnetic separation for split-up of ferrous metals, non-ferrous metals and non-magnetic wastes; also, electric conductivity or density separation may be induced (Osibanjo & Nnorom, 2007).
1. Optical Separation
By the use of different sensors and cameras, specific materials are identified in the waste stream and separated by the use of compressed air (usually). Optical separators are predominantly used for separating various types of plastics, but they can also be used to separate metals. Some examples manufactured by the CP Group’s Division MSS Optical Sorters are the following:

- CIRRUS™: Used to separate specific types of plastics like ABS, HIPS, PC, PC-ABS, etc.
- L-VIS™: Advanced to sort through particles even less than 1mm in size. It is also used mostly for plastics, but it can be used to separate certain kinds of metallic parts too.
- MetalSort™: An all metal detector hat removes any traces of metal left after other conventional techniques (CP Group, 2012).

2. Magnetic Separation
These are used specifically to separate ferrous from non-ferrous metals and other non-magnetic wastes. Advances in technology in recent years have allowed making high intensity magnetic separators that extract certain alloys and that can be manipulated to separate metals in different magnetic field gradients.

3. Electric Conductivity
The three most common types of separators based on the resistivity of materials are the Eddy Current Separator or ECS, the Corona Electrostatic Separation and the Triboelectric Separation. Table 2.1 (Cui & Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, 2003) illustrates in detail each of these techniques.

<table>
<thead>
<tr>
<th>Processes</th>
<th>Separation criteria</th>
<th>Principles of separation</th>
<th>Sorting task</th>
<th>Workable particle size ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eddy Current Separation</td>
<td>Electric conductivity and density</td>
<td>Repulsive forces exerted in the electrically conductive particles due to the interaction between the alternative magnetic field and the Eddy currents induced by the magnetic field (Lorentz force)</td>
<td>Non-ferrous metal/non-metal separation</td>
<td>> 5mm</td>
</tr>
<tr>
<td>Corona Electrostatic</td>
<td>Electric conductivity</td>
<td>Corona charge and differentiated discharge lead to different charges of particles and this to action of different forces (particularly image forces)</td>
<td>Metal/non-metal separation</td>
<td>0.1 – 5mm (10mm for laminar particles)</td>
</tr>
<tr>
<td>Separation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Although the most generally known E – Waste separators are the Eddy Current Separators (ECS’s), they still have efficiency problems with splitting certain components. A newer, more effective machine is the Titech X-Tract Separator and Finder, the problem is its cost of $700,000 USD (Krikke, 2008).

4. Density Based Separation
Because some materials are heavier than others, especially metals and non-metals, separation is achieved by taking advantage of this property. Some examples are:

- Sink-float separation
- Gravity separator
- Hydrocyclone (takes advantage of resistance to motion by a fluid)
- Sorting by jigging
- Sorting in chutes and on tables
- Up-stream separation

Once each type of material is separated, recovery also makes use of particular technology.

Refining
There are many methods and procedures to return the separated materials to a usable form. Highly developed technology needs to be implemented in this stage. Some of the methods and current technologies applied for refining are explored in the next section. It is worth mentioning that even though there is a considerable amount of glass and plastic in E – Waste, and that technology is also advancing for their optimum recovery; the aim of this thesis focuses on the reuse of metals, which have the most economic value.

By means of the equipment mentioned above, the ferrous metals can be separated from the non-ferrous because of their magnetic properties. Then, nonferrous metals are extracted from non-metallic particles through the Eddy Current separators, because of their electrical conductivity. Some of the metals found in E – Waste, as well as their “separating” properties are shown in Table 2.2 (Kang & Shoenung, 2005):
Table 2.2: Materials that can be separated by an Eddy Current Separator, and their properties

<table>
<thead>
<tr>
<th>Materials</th>
<th>$\sigma \left(10^{-8}/\Omega \text{ m}\right)^{f}$</th>
<th>$\rho\left(10^{3}\text{ kg/m}^3\right)^{g}$</th>
<th>$\sigma/\rho \left(10^{3}\text{ m}^2/\Omega \text{ kg}\right)^{h}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.35</td>
<td>2.7</td>
<td>13.1</td>
</tr>
<tr>
<td>Zn</td>
<td>0.17</td>
<td>7.1</td>
<td>2.4</td>
</tr>
<tr>
<td>Ag</td>
<td>0.63</td>
<td>10.5</td>
<td>6</td>
</tr>
<tr>
<td>Cu</td>
<td>0.59</td>
<td>8.9</td>
<td>6.6</td>
</tr>
<tr>
<td>Brass</td>
<td>0.14</td>
<td>8.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Pb</td>
<td>0.05</td>
<td>11.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

As for specific element separation, a brief description of the processes for the main metals in E–Waste is provided next (Kang & Shoening, 2005):

Copper (Cu): Copper extracted from E–Waste is a very lucrative source, since its concentration is higher than that of Cu ores (10-50 times higher (Liu, 2014)). Due to the importance of Cu recovery, there are 2 main methods described in this thesis:

- **Pyrometallurgy:** Simply put, it is the melting of crushed scrap at high temperatures (~1,250°C) in order to recover non-ferrous and precious metals. Through this technique, metal oxides and plastics are differentiated, and later on, the pure metals are extracted through chemical reactions. There are variations to the process depending on the technology used, but as an example, **Figure 2.3** (Veldhuizen & Sippel, 1994) depicts the **Noranda Process** as explained by Veldhuizen and Sippel. It is important to note that the reactor works with an excess of oxygen in the introduced air to improve combustion (39%). Separation takes place after the molten slag is removed from the reactor and into the converter and then the electorefining anodes. The purity of the recovered copper from the anodes is of around 99.1%. The other 0.9% contains precious metals (gold, silver, platinum and palladium along with selenium, tellurium, and nickel) (Cui & Zhang, Metallurgical recovery of metals from electronic waste: A review, 2008). Benefits from this one step/continuous process are that it is already established worldwide in industry and compared to other smelting processes; its gas emissions are low. Noticeable downsides of this process are the intense energy use for the combustion process (amount of excess O_2 supplied) and the quantity limitation by the reactor’s size.

f Electrical Conductivity
g Density
h Ratio of electrical conductivity to density
Hydrometallurgy: Even though pyrometallurgy has been practiced for over 30 years, hydrometallurgy offers a more efficient method of recovery of metals. The main and first step is the oxidizing leaching of metals by an established agent (e.g. cyanide, halide, thiourea or thiosulfate) depending on the metals to be extracted. The process is followed by the purification of the leaching solution (usually achieved via filtration and precipitation) and finally, by the recovery of the metals (Cui & Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, 2003). Figure 2.4 (Quinet, Proost, & Van Lierde, 2005), provides an example of the process illustrated by Quinet, et. al.
In some instances the percentage of recovery is of 100% depending on the type of electronic equipment. The disadvantages of hydrometallurgy are the extensive care of hazardous substances it requires and that many of the hydrometallurgical processes have not reached an industrial scale.

Precious Metals: Without a doubt, recovery of precious metals is the most profitable process in recycling E – Waste since among these precious metals gold, silver, palladium, and platinum can be found. Their recovery is actually a byproduct of copper’s; they are usually found together in E – Waste because both make part of Printed Circuit Boards; which in turn are abundant in electronics. The recovery process takes place just after the electrolytic refinery as seen in the diagram above. The anode slime that comes out of this procedure is leached by pressure. The leach then gets dried and burned in a precious metals furnace among fluxing agents. The recovered material is primarily silver, that is cast into a silver anode (a byproduct is selenium). Then, through another high-intensity electrolytic refining process, a silver cathode and gold anode slime are recovered in high purity. Finally, the gold anode slime is leached to recover high-purity gold, palladium and platinum (Quinet, Proost, & Van Lierde, 2005).
Mercury (Hg): Mercury is mentioned in this section because of its in hazardous properties in E – Waste more than for its economic value. Mercury must be extracted from cold cathode fluorescent lamps (CCFL) tubes in the backlights of LCD monitors, LCD television and laptops. Thankfully, this is achievable via manually separating these components (Liu, 2014).

Cadmium (Cd): For similar reasons as mercury, Cadmium must be extracted. It is usually found in semiconductors (PV modules) and PCB’s. Its separation is relatively easy as it is found in dust and may be removed as cadmium oxide through heating processes (Liu, 2014).

Nickel (Ni): As is it found on a relatively high amount among E – Waste (mostly in capacitors), Nickel may be extracted through leaching with HNO₃ at 90 °C (Cui & Forssberg, Mechanical recycling of waste electric and electronic equipment: a review, 2003).

The quantity and quality of the End of Life treatment given to E – Waste depends enormously on the economy and regulations of the country involved. Due to the increasing amount of electronic waste in the last few years and its expected growth, E – Waste treatment has already attracted a lot of attention. New technologies and methods are currently being developed to enable society to deal with this problem in an efficient, economic, and environmentally friendly way. These issues will be explored in the next chapters for the case of Mexico.

2.3.Global Technologic Status
As has been stated, some developed countries have very high recycling percentages of their waste streams; this is done mainly through the use of the advanced equipment mentioned earlier. Even so, as it may be graphically related in the following figure and Figure 1.2, there are some inconsistencies with the relationship between the implementation of recycling in a country and technological progress for recycling in that same country. The most noticeable inconsistencies are the U.S., China and Russia; Figure 2.5 (White & Singh Gole, 2013) measures the amount of innovation carried out in the world for E – Waste treatment, and confirms that technological development and the actual recycling rates in a given country may be unrelated.
2.4. The economics of managing E – Waste

A very important issue with proper E – Waste management is the economic factor. The parties involved may be the government, private companies that wish to use recycled materials for their products, manufacturers of the electronics being processed, or even the consumer. As it will be explored in this section, the cost may fall directly on only one of these players or it may be collaboration between all to reduce the expenses.

Likewise, the expenditures for treatment are divided throughout the whole procedure. Starting with the collection of E – Waste by separating it from other MSW. For the finances of E – Waste management, the most important cost (but probably not the highest) is the collection cost because removing a discarded electronic product from the environment comes before the later use it may be given.

Depending on the legislations and economy of a country, the salvage disbursement may fall on:
2.4.1. The Consumer
An increase in the sale price of the electronic product due to the proper End of Life handling may be paid by the buyer to share in responsibility with the manufacturer. This expense may lead to discourage consumers when buying electronics; therefore, it is essential to inform shoppers about the long term benefits of reducing E – Waste even if they pay something extra at the beginning.

2.4.2. The Manufacturer
Usually referred to as Extended Producer Responsibility (EPR), it is “an environmental policy approach in which a producer’s responsibility, physical and/or financial, for a product is extended to the postconsumer stage of a product’s life cycle” (OECD, 2001). Naturally, this impacts the profits of the producer, but by creating awareness in the consumers and good resource planning, the losses may by reduced to a minimum, or it may even serve as a beneficial publicity campaign. Complementing the commentary above, the cost may be alleviated by increasing the sale price by selling the collected material to the next user, or by reusing the recovered material and thus saving in raw materials acquisition. Some firms are already on this path, they accompany their EPR with public awareness and most of all, reduction in the use of hazardous materials in their products.

2.4.3. Private Institutions
As part of a “green” program, a corporation may be willing to pay for the gathering of E – Waste in order to use recycled material in its manufacturing process. These also include recycling companies that sell their refined products as raw materials to other industries and the Waste to Energy (WTE) companies that will be later addressed in this thesis. For example, Best Buy has an E – Waste drop off program for costumers, from which it makes revenue by selling the collected material to other businesses that need to cover a recycling quota. (Anston, 2012)

2.4.4. Government
As part of the governmental agenda, some of the ecological and sustainability budget may be destined for recycling of E – Waste (If the country’s GDP and resourcefulness allows). If well adopted, this may even be profitable for the national, regional or local government. For example, hiring “informal” recyclers for the collection and collaborating with companies for the renewed use of the recovered materials.¹

For the physical separation of the components and their salvaging, refurbishing, and/or refining processes, a suitable handler must intervene (e.g. Waste to Energy Company). For these handlers, the cost of the aforementioned operations may begin during the acquirement of the waste. In this case, the revenue comes after selling the processed material/energy and byproducts. The cost may only be operational, since the recycler is only an intermediary step for a company that wishes to reuse recovered materials. For example COVANTA ENERGY CORPORATION, a world leader in Waste to Energy,

¹ One of the principal challenges in Mexico for financing collection of E – Waste appropriately is that most of the valuable materials and metals are recovered by informal recyclers and these sell them on secondary markets.
offers sustainability consulting services to companies as well as WTE technology that transforms tons of waste into electricity for homes and industries (COVANTA ENERGY CORPORATION, 2015). The costs they may assume are surpassed by the different products and services they offer and that make them such a successful company.

It is important to note that all the interactions between companies, government and recyclers may be at different stages of the treatment of E – Waste because there may be interest in the recovery of the unshredded waste or after the composing materials have been extracted and refined for further use.

There are many means to distribute the cost of handling E – Waste and they mainly rely on each country’s economy and legislations, because ultimately companies and individuals are bound by law and the market. Nonetheless, the optimum solution is where every party involved has a shared responsibility and “pays” for a part of the electronics life.

2.5. Waste to Energy

A complete treatment of E – Waste is portrayed in the methods described earlier, but what if there were further or alternative processes? Thanks to developing technology since the 1970’s, energy may be obtained from what can’t be reused, recycled or refined. Nowadays, most of the processes for recovery of energy with waste have very little emissions of toxins and/or Green House Gases (GHG). Additionally, WTE is an important source of revenue for the waste treatment industry.

Now, depending on the composition (organic content, moisture and calorific value mainly) and amount (size of the components and density) of the waste, a particular path can be taken, since there are several ways in which to take advantage of the energy stored in matter. The main processes are: Thermal Treatment, in which an energy source may be recovered from the heat and the gases that come out of the waste by combustion, gasification or pyrolysis; and Physic-chemical Treatment, in which Solid waste is treated so that high-energy fuel pellets are drawn from the calorific filled portion of the waste.

Completing the treatment of E – Waste by converting its disposed fraction into energy includes a number of benefits that are not widely known due to the general and biased knowledge given by open incineration methods. These advantages should be made known to the public and especially to governments so further attention is given to this renewable source of energy. Some of these benefits include:

- Reduction of use of fossil fuels as energy sources.
- Reduction of transportation impacts and landfill space due to large waste residues.
- Reduction in GHG emissions by eliminating methane outputs.
- Recovery of previously unrecycled metals.
2.5.1. E – Waste to Energy?

When subjecting electronic waste to this type of treatment it is important to ensure that previous management has been done. Reuse or refurbish of the functional parts and recycling and/or refining of the metals that can be recovered by separation is essential and preferable, but further handling can be applied to the left-over material.

Now that all the principal processes for E – Waste have been covered; the most important factors that affect these methods, such as legislative pressures, public opinion and current initiatives must be delved into, in order to provide the whole scope for this study. These factors will be addressed in two instances to provide a comparison: the global situation as one and the particular case of Mexico as the other.
3. Adjacent Factors

There are different cultures all around the world, but there are some perspectives that even the most traditionally diverse nations share; an example: a product constitutes a responsibility from all that come in contact with it. From its creation to the end of its life, every man-made artifact needs monitoring and proper handling.

Of course this isn’t always the case, nor does it apply to every country in the world (yet). Through time and development of economies, people have realized firsthand the Conservation of Mass Principle: Everything you have laid hands on does not disintegrate when you are finished with it, it ends up somewhere. How did they come to understand this? When the objects discarded came back indirectly in a threatening form to them or the place they live.

The following section provides some insight on how waste is dealt with in many parts of the world; general points of view from different countries, measures taken and the technology used to implement those measures.

3.1. Legislative Pressures

Many factors have led the world to be conscious about its waste through time, and a lot more in the last decades. This has created many global policies and legislations like:

Extended Producer Responsibility (EPR): “Aimed for ‘prioritization of preventive measures over end-of-pipe approaches’” (Nnorom & Osibanjo, 2008). This means that as the manufacturer has the responsibility for the End of Life treatment of its product, optimization of material use and manufacture is desired to avoid further complications. It was developed to comply with the “Polluter pays Principle” (Kibert, 2004), and it is exercised through product fees and taxes such as advance recycling fees (ARF’s), product take-back mandates, virgin material taxes, and combinations. Other policies include pay-as-you-throw, waste collection charges, and landfill bans (Nnorom & Osibanjo, 2008).

EPR proposes to:

- Reduce and prevent waste
- Reutilize products
- Augment the use of recycled materials
- Consume less natural resources
- Integrate environmental costs into the price of the product
- Recover energy from non-recyclable materials (Langrova, 2002)

Take Back Laws: Could be called EPR as well, because they involve responsibility for a product after its use, but in this specific instance it means not only to oversee the destiny of the artifact, but to handle it directly again.
These and others measures have been adopted by several companies and countries around the world as may be inferred from the previous summary. Many of these policies have even helped create new sectors of industry.

Also as seen previously, there are some countries further along the way like Japan, Taiwan or the EU. Through very disciplined and rigorous efforts they aim to become Circular Economies that take advantage of all the materials that make up waste. These efforts are not only done because of “command and control” from the corresponding governments, but also from the volunteer communities that constitute those countries. Developing nations are in need to follow these examples not only to achieve sustainable living, but to boost their economies as well.

Thankfully, the path has been already laid down for the developing world in many instances. To provide a standard for sustainability (the proper management of waste included) several certifications have been put in place.

3.2. Certifications

The same way every professional process or activity has its own; there are standards that set the quality of E – Waste management of a certain organization or company. These standards, based on the general objectives E – Waste management should accomplish, follow a set of rules and demand previously established requirements at various levels to determine the efficiency of the examined party. Some of these accreditations are valued internationally and others depend on the individual legislation of every country, or even of very municipality.

3.2.1. ISO 14001

The most famous and internationally known organization that has developed thousands of sets of standards is the International Standardization Organization (ISO). It is important to introduce them in this section because their 14000 series addresses all issues for Environmental Management, and the 14001; the one that includes E – Waste management, just had a revision this 2015 (International Organization for Standardization, 2015).

Looking out for sustainability from the environment’s perspective, the ISO 14001 Standards establish the requirements for organizations that want to achieve optimum environmental recognition through their due responsibilities. These standards are made to fit any type of institution since they provide a Life Cycle Analysis perspective for any product or service the evaluated organization provides. Though there are thousands of certifications that apply the ISO 14001 standards, here are some (with their respective criteria) recognized as the highest (globally) that are employed directly to E – Waste management.

3.2.2. Recycling Industry Operating Standard® (RIOS)

Although institutionalized for the scrap industry and for the United States, the RIOS is recognized internationally and it is suitable for electronics recycling. It comprises a mixture of the ISO 9001, ISO
14001 and OHSAS1 18001 Standards, which means it aims to verify the environmental, health, safety and overall quality of a company. It was established by the Institute of Scrap Recycling Industries (ISRI), and it forms part of a double program called the Certified Electronics Recyclers® (National Sanitation Foundation, 2015). It aims to give the inspected organization a higher prestige in order to broaden its horizons and to be able to cooperate with other companies since it reflects integrity and responsibility. It also looks for the well-being of all employees of the company, as well as more job opportunities by increasing the processes a product is put through, even after its use.

The process, which may take from three to eighteen months, is divided into several steps. These include a RIOS Membership application, in order to be handed a Guide Book and/or “Train the Trainer” Workshops. These previous steps are needed for the implementation of the Management System that is later audited in two stages by an American National Standards Institute-American Society of Quality (ANSI-ASQ) National Accreditation Board (ANAB) representative team in two audit stages (ISRI Services Corporation, 2013).

3.2.3. Responsible Recycling (R2)

This certification serves as a complement to the Certified Electronics Recyclers® of RIOS. It is focused for electronics recyclers and it is based on internationally approved recycling practices that address the separation and reuse processes for disposed-of electronics. This accreditation is also EPA approved it allows the evaluated institution to interact with international counterparts.

One particularity regarding these combined certifications; they mainly focus on the proficiency and improvement of a company in terms of productivity and positioning, leaving out many aspects important to the environment. For example it has ample allowance for the disposal of toxic substances, for the export of waste (viewed as a legal business operation with the importer) and for the working conditions of the waste handlers, where other certifications have stricter standards (Electronics TakeBack Coalition, 2010).

3.2.4. e-Stewards® Certification

Probably the most complete certification recognized internationally; it was developed by The Basel Action Network (BAN) in 2003 with a global range in order to abide by the very high standards of the ISO 14001. The e-Stewards aims to complete the circle of an electronics life, and in case there is no reuse option, it sees that the waste is disposed of in an environmentally and healthy safe manner (National Sanitation Foundation, 2015). Its adherence to such rigorous requirements is what makes it so prestigious. For example, it does not allow export of non-working hazardous equipment to developing countries, it does not allow the incineration of toxics from E – Waste on landfills, and it does not allow the use of prison work for the handle of toxic substances (Electronics TakeBack Coalition, 2010).

This standard has set the bar for outstanding recycling because it has not only proven to require the best out of the certifying candidates; it helps them achieve progress via a safe and responsible marketplace for used electronics and electronic waste. Some important enterprises that hold the e-Stewards certification are Raytheon, Samsung and Iron Mountain (E-Stewards, 2015).

1 Occupational Health and Safety Assessment Series
3.2.5. **WEELABEX**
The European equivalent of the certifications described above. It was created in 2009 by a collaboration of Process Industry stakeholders and it is run by the WEEE Forum. Financed by the European Union’s environmental program LIFE (LIFE07 ENV/B/000041), it aims to watch over the complete End of Life treatment of E – Waste. It follows a strict procedure, and by auditing the certification candidates, it determines if the recycling and disposal of the waste is done properly and under all applicable legislations. Some properties of the certification include:

1. All standards are normative requirements that evaluate all stages in End of Life treatment; from collection of the waste to the preparation for re-use
2. All standards include the 10 WEE categories
3. WEELABEX systems must be applied in all the stages
4. All standards are part of legislative requirements of the Directive 2002/96/EC (WEELABEX, 2015)

Certifications are an integral part of a sustainable company and a fundamental part in a recycling organization. Internationally or locally accepted, these endorsements reflect the quality of a corporation; they set the bar for newer industries and establish the basics for areas of opportunity. Examples of leaders that hold these certifications and more are presented next.

3.3. Successful E – Waste Treatment Initiatives
Treatment of old electronic devices and parts worldwide is done by two types of companies. Electronic product manufacturers that get involved with the End Of Life management of their products in order to act sustainably and profit from it, and organizations that specialize in the treatment of E – Waste. A couple of exemplary firms from both categories are mentioned in the following paragraphs; more examples can be found in Appendix 2.

3.3.1. **Stena Metall Group AB**
This family owned company was founded in Sweden in 1939 by Sten Allan Olsson and is dedicated to the recovery and recycling of any type of waste (from metals to chemicals and hazardous waste). It started by trading metal scrap and raw rubber; it still does today by being involved in the steel and aluminum business through processing, distribution, and international trade of these and other metals, as well as oil. Through dedication and innovation, Stena has been expanding since its foundation and is now working in more than 10 countries and has more than 3,200 employees. It began dealing with electronic scrap since 1995.

The group is made up by three parent companies (Stena AB, Stena Sessan AB, and Stena Metall AB) that form the “Stena Sphere”. These in turn are divided into seven business areas, one of which is the Recycling, Environmental Services and Training. This area has several subsidiaries that address specific recycling streams and operations:
1. **Recycling**: Offers customized solutions for any type of client regardless of waste type. It offers products and various services through its 165 facilities all over Europe. Examples are waste collection, authorization applications, statistics, logistics and training.

2. **Recycling Electronics**: Offers high quality solutions for electronics recycling by innovating processes and keeping up with the newer and more complex electronic devices.

3. **Trading and Sales**: Trades ferrous, non-ferrous, stainless scrap, raw steel and various steel products all over the world through more than 30 representative offices. It foresees the whole process from the collection of the scrap to its distribution as a finished product.

4. **Aluminum**: Stena Aluminum is a subsidiary of the Group that specializes in recycled aluminum products for industrial processes.

5. **Steel**: Stena Stål is another subsidiary specializing in recycled steel products.

6. **Oil**: Not the strongest area of the Group, but still an important one, Stena Oil is the “leading physical supplier of Marine fuels in the Scandinavian and North Sea waters” (Stena Metall Group, 2015).

7. **Finance**: As such a large company, it has its own internal bank in charge of accounting for its subsidiaries. Some of the divisions even have stocks and bonds in European Markets that are managed by this internal bank.

With a focus on having the most sustainable processes in all of its areas, the Stena Group has its own Innovations and Research Department that focuses mainly on achieving all the available environmental benefits and safety for its clients and itself as well (Stena Metall Group, 2015).

3.3.2. Umicore NV

Umicore is the integration of some very old Belgian mining companies like Société Anonyme des Mines et Fonderies de Zinc de la Vieille-Montagne (1837) and Union Minière du Haut Katanga (1906). Now a colossal company, it employs more than 10,000 individuals over 38 countries and has a turnover of about €8.8 billion. Its mission is “Materials for a better life”; this means it seeks to develop and produce recyclable materials from recyclable parts and materials as well. Umicore’s R&D and technology has the goal to create sustainable value.

Through innovation applied by its more than 900 colleagues in 20 different research centers, and its €140 million per year investments, Umicore strives to achieve sustainability in the following areas:

- **Resource scarcity**: It recovers more than 20 elements including precious and other metals through recycling.
- **Clean air**: To help abide by stricter emissions standards, it provides newer technologies in automotive catalysts.
- **Vehicle electrification**: Produces lithium ion batteries for a new generation of electric vehicles.
- **Clean energy**: Develops highly efficient photovoltaic technologies.

Umicore provides products and services in many industries, which are summarized in Table 3.1:
It also has public shares and stocks in European markets and an amazing website where all its history, technologies, materials, products, services and finances are explained in a very interactive manner (Umicore N.V., 2016).

Most of these companies have had many years to have the global capacity they now present, but many started out as a little local organization based on a garage. As they have grown they have crossed frontiers and have introduced themselves in regions with different legislations and regulations, but this has not prevented their expansion. For the next chapters of this thesis, the walls to break and the enterprises that are already doing so in Mexico will be explored.
4. Mexican Reality

Now that global aspects on E-Waste have been reviewed, it is pertinent to address the particularities that regard this thesis; the situation Mexico faces with its ever-growing electronic waste problem. As it will be mentioned and explored in the following sections, Mexico is starting to steer in the right directions, and with the appropriate push, it may give the third world an example to address the E-Waste problem.

4.1. Government Institutions and Regulations

As it happens in every country, Mexico’s regulations set the stage for the enrichment or downfall of its own progress. Due to several factors within its regulatory system, Mexico has been stuck in some areas and has not yet developed the potential to reach a first world status. But things are changing; slowly but surely improvement is coming along, and two of the most promising fields are Energy and Environmental Care thanks to new laws and decrees established by the current administration.

The Environment and Natural Resources Secretariat (Secretaría de Medio Ambiente y Recursos Naturales, SEMARNAT) is the main authority on environmental law in Mexico. It establishes all the regulations concerning the use of Mexican natural resources and the safekeeping of all flora and fauna on national soil. Along with other agencies such as the Ecology and Climate Change National Institute (Instituto Nacional de Ecología y Cambio Climático, INECC) or the National Institute of Geography and Statistics (Instituto Nacional de Estadística y Geografía, INEGI) it carries out studies to help maintain the balance between Mexicans and their resources.

As more resources are consumed and more waste is generated, Mexican society must adapt to continue to prosper. This adjustment is best achieved by the establishment of laws and regulations proposed by the government and its institutions. That said, there are two main regulations controlled by SEMARNAT that include E-Waste management in Mexico. These are designed to protect the environment and those that establish the procedures to manage and dispose all types of waste in different locations (e.g. industrial, municipal, etc.).

The General Law for Ecological Balance and Protection of the Environment (Ley General Del Equilibrio Ecológico y la Protección al Ambiente, LGEEPA) proceeds from the Constitution of the Mexican United States. It states through its various articles (especially Article 137), that it is responsibility of the Secretariat, State and Federal governments to use all means necessary to eliminate any wastes that may be harmful to the environment. Chapter 5 is dedicated exclusively to Hazardous Materials and Wastes (Diario Oficial de la Federación, 2012).

A subsequent directive of this General Law is NOM-083-SEMARNAT-2003 (SEMARNAT, 2012). It establishes environmental protective measures for the siting, design, construction, operation, maintenance and closure of landfill for MSW. These include:

- Biogases capture
- Leachates recollection
• Proper rain water drainage
• Animal control
• Lightweight material aspersion control

On the other hand, there is the General Law for Prevention and Integral Management of Wastes (Ley General para la Prevención y Gestión Integral de los Residuos, LGPGIR) that classifies E – Waste as waste that needs special handle. Specifically, Article 19 of this law describes E – Waste as technological waste from manufacturers and other electronic products at the end of their lifespan. It also states that state governments are responsible for the specially handled waste. To date, 19 states (Aguascalientes, Baja California, Chiapas, Chihuahua, Durango, Guanajuato, Guerrero, Hidalgo, Jalisco, México City, Michoacán, Nuevo León, Puebla, Querétaro, Quintana Roo, Sonora, Tabasco, Tamaulipas, and Veracruz) have legal framework for special waste management plans. Chapter 2 and Title II of this General Law elaborate on all legal and technical specifications for Special Treatment Waste management plans (SEMARNAT, 2015), (Rojas Bracho, Gavilán García, Alcántara Concepción, & Cano Robles, 2011).

Some electronic equipment contains hazardous materials (e.g. Lead, Mercury, Cadmium, Tellurium, etc.). These are defined in the LGEEPA Chapter V, Article 146 as materials that match one of the characteristics of the acronym CRETIB: Corrodible, Reactive, Explosive, Toxic, (In)flammable, Biological-Infectious. Article 31 establishes the components which contain this type of waste. But also, NOM-052-SEMARNAT-2005 (SEMARNAT, 2006) establishes the characteristics and procedures to identify, classify, and separate hazardous wastes. Regarding hazardous components in E – Waste, List 5 of the norm classifies the following:

• “Welding waste from producing electronic circuits containing lead or other metals defined as a toxic hazard.
• Waste from solvents used in cleaning the plates in the production of electronic circuits.
• Waste generated in the preparation of magnetic pigments and the preparation of mixture for coverage in magnetic tape production.
• Waste from the electronic tubes coating during their production” (SEMARNAT, 2006).

For the proper management of these wastes, the standard NOM-161-SEMARNAT-2011 (SEMARNAT, 2013) establishes the criteria and procedures to follow in order to establish management plans. Furthermore, the amount of MSW generated in Mexico is calculated by the Social Development Secretariat (Secretaría de Desarrollo Social, SEDESOL) in accordance to what is established in the norm NMX-AA-61-1985 (SECRETARIA DE COMERCIO Y FOMENTO INDUSTRIAL, 1985).

Other Mexican regulations that in some instances apply to E – Waste are (SEMARNAT, 2012):

• MX-AA-139-SCFI-2008; Toxic compounds extraction test (PECT) (published on DOF, 06-18-2008).
• NOM-055-SEMARNAT-2003; Requirements for hazardous waste confinement site location (published on DOF, 11-03-2004).
• **NOM-056-ECOL-1993;** Requirements for hazardous waste additional infrastructure (published on DOF, 10-22-1993).

• **NOM-053-SEMARNAT-1993, NOM-054-SEMARNAT-1993;** Procedure for the extraction and determination of incompatibility between two or more hazardous wastes. Published on DOF, 10-22-1993; DOF, 04-23-1993 respectively).

• **NOM-098-SEMARNAT-2002;** Environmental protection – waste incineration, operation and limitation of pollutant emissions (published on DOF, 10-01-2004)

A representation of the main Mexican regulations and their area of focus in waste treatment are depicted below as a summary.

Figure 4.1: Mexican Regulations that involve E – Waste Management
4.2. Private and Governmental Programs

Thanks to the Energy Reform and others, as well as the regulations and agreements mentioned above, the opportunity has opened for many entrepreneurs and foreign companies to enter the world of recycling in Mexico in a profitable way. Here are some examples of these endeavors and their accomplishments so far in the Mexican market. The information below was procured from the website of these businesses, although there was an effort to contact them all for additional information.

4.2.1. Recicladora Electrónica

Company that started in 2012, completely dedicated to the recycling of commercial E–Waste. From the moment the equipment becomes useless, until its reuse or strip down for the refining of parts, Recicladora Electrónica provides the service. One of the reasons it gives for providing the recycling service is to help companies comply with NOM 161 from SEMARNAT (mentioned in previous section). Its set of clients comprises from little to large industries.

It enlists four types of services:

- **Collection of E – Waste**: for eligibility of this service, the only requirements are that the amount of E – Waste is cost-effective for the company and that a list (preferably with pictures) of the disposed equipment is presented before the recollection is made.

- **Data Elimination**: When the waste collected may contain integral information about the client, the physical destruction of any hard disks or any type of recording object is the first step after recollection.

- **E–Waste Reimbursement**: Prices for the waste vary depending on the amount and quality of the disregarded electronics, which are usually bought in batches.

- **Separation and classification of components**: By classification of every part and component and their respective marketability, Recicladora Electrónica makes its revenue.

The organization prides itself on the logistics, prices for the waste, infrastructure it provides, and its aim to make the 3R’s be accomplished in great quality (Recicladora Electrónica, 2012).

4.2.2. Recall International

Part of the International Association of Electronics Recyclers, it specializes in the disposal of mobile phones and has several programs for their proper End of Life use. The programs include:

- **EcoPoint’s®**: The EcoPoint’s® are large receptacles scattered throughout the municipalities (Figure 4.2 (Recall International, 2012)), where people can securely deposit their old phones. In case the phone is in conditions to be reused, it is required to put a label on the phone before placing it inside the collection bin.

The agreements between Recall International and the local governments helped this initiative be set forward. There are currently 500 EcoPoint’s® only in Mexico City.
- **Agreements with carrier companies like Telcel**: The recollection program from mobile carriers has the following premises purchase (Figure 4.3 (Recall International, 2012)):
Depending on the amount and models, the purchase may be done by kg of merchandise or by a fixed unit price assigned to each model.

They also offer the option of installing an EcoPoint® on site for recollection and later sale to Recall International.

This program also applies for small, medium and large companies that wish to establish business relationships with Recall International.

- **Donations**: These are divided into two categories.
 - Donations of < than 40 phones; they add up to other similar donations and then are taken to a designated charitable institution.
 - Donations > than 40 phones; the donor chooses the institution where the phones are to be reused.

They have a fund raising modality where they enable individuals with the possibility of collecting the neighborhood’s old phones (with the help of campaign material sent by Recall International) and then receiving funds by selling them to Recall International (Recall International, 2012).

4.2.3. **Secretaría del Medio Ambiente del Distrito Federal (SEDEMA)**

Started in 2013 by SEDEMA, Reciclatrón is a monthly organized event proposed by the Government of Mexico City to recycle all type of household E – Waste. All collected scrap is sent to a company called Recupera for its primary separation. The most significant categories recovered, for which people are asked to separate previously, are (SEDEMA, 2016):

<table>
<thead>
<tr>
<th>Categories</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keyboards, printers, fax machines, DVD/VHS/Beta, MP3, mini consoles, cameras, camcorders, scanners, mini components, radio-recorders, fixed phones, cordless phones, projectors, No-breakers, mouse, radios, car radios, multiplexers, amplifiers/speakers, equalizers, microwaves, vacuum cleaners, blenders, irons, dishwashers, dryers, plates, coffee makers, hair dryers, engines</td>
<td>CPUs, monitors, laptops, mini laptops, hard drives, televisions</td>
<td>Mobile phones and batteries</td>
<td>Chargers, cables, discs and movies</td>
<td></td>
</tr>
</tbody>
</table>

Later on, the recovered material is sent to Cali Resources S. A. de C. V., in Tijuana, Baja California for its proper reuse and recycling.

The results for last year are displayed in Table 4.2 (SEDEMA, 2016):
4.2.4. REMSA

Recicla Electrónicos México (REMSA) is a 100% Mexican company dedicated to the treatment of all kinds of E-Waste from all kinds of sources. It has the necessary infrastructure to identify, collect, separate and recycle monitor glass, plastics, electronic cards and metals (ferrous and non-ferrous). It has branches all over the 31 states of the Mexican Republic and the Federal District.

It serves companies by recollection of their E-Waste and the subsequent treatment needed to reduce, reuse and recycle. For recollection logistics it applies two methods; the direct recollection by vehicle or payment for parcel deliveries. In the case of hard disks, it provides an in-situ destruction procedure; for any other type of recording device, it grants the client a “Destruction Certificate” 30 days after the recollection of the waste.

Its main program is called “Punto Verde®” and it has the following objectives (REMSA, 2016):

- Create conscience in Mexican society through various blogs, events, and conferences.
- Establish donation rallies to help schools with equipment that still works. These computers get refurbishment and a 6 month warranty seal by Punto Verde®, and they must be returned to Punto Verde® at the end of their second life.
• Establish meetings with government officials to demand compliance of new environmental regulations to manufacturers that evade responsibility through corruption and bribes.

• Distribute recycling points (Puntos Verde’s®) and recycling events (Reciclón®) all over the country where people are able to bring their E – Waste. These sites are coordinated by volunteers of non-profit organizations or government employees.

It exemplifies its recovery process through the following diagram (REMSA, 2016)\(^k\):

![REMMSA Recovery Process Diagram](image)

Figure 4.4: REMSA Recovery Process

Other E – Waste management businesses, including collectors, disassemblers, and recyclers are displayed in Table 4.3 along with their most significant characteristics:

\(^k\) All logos and trademarks are property of their respective company