Unleashing the power in waste
Comparison of Greenhouse gas and other Performance Indicators for Waste-to-Energy concepts and Landfilling

ir. M.A.J. (Marcel) van Berlo, Harry de Waart
Afval Energie Bedrijf, Amsterdam

Keywords: CO₂-evaluation, CO₂-avoidence, GreenHouse Gas, Municipal Solid Waste, Waste-to-Energy, Landfill, recovery, recycling, energy efficiency, exergy.

Abstract
A CO₂-evaluation is made for landfill and Waste-to-Energy (WtE) concepts. Different concepts are identified and compared for their performance on energy and materials recovery. Performance indicators for WtE are compared; like energy efficiency, EXergy efficiency, the R1-D10 formula from the EU Waste Framework directive, and CO₂-emission and avoidance.

It is shown that, due to the biomass content and the avoidance effect due to the recovery of energy and materials, conventional WIE has a near zero CO₂-emission per ton of waste. Optimised WIE can have a significant negative overall emission of 200-300 kgCO₂/ton of waste. This means an absolute net avoidance of CO₂ by WIE. The reduction relative to landfilling is as much as 500-1200 kgCO₂/ton of waste. The potential for optimisation of the energy recovery as well as the material recovery of the WIE infrastructure is demonstrated.

If WIE is evaluated as a power plant, an optimised plant can have an emission of only 0,336 kgCO₂/kWh, lower than a gas fired electrical power plant, and this absolute figure does not include the avoided landfill emissions. With CHP this can be reduced even further.

The actual potential of electricity production from WIE for the EU-15 is calculated to be over 7,5% of total electricity production. Additionally heat and the metal recoveries could be doubled.

1 Introduction
Waste is mainly dealt with as a problem of hygiene and other health related risks. The potential of waste as a resource is seldom taken as the starting point for waste management regulations. Until recently WtE was principally designed around the paradigm “design to be clean”, designed to minimize the quantity and the (negative) effect of its emissions. There is however a new and strong tendency to develop a new generation of WIE that are “designed for output”, maximising the recovery of energy and materials. This requires new evaluations of the effects of the outputs of WIE.

In this study the calculations for the Green House Gas (GHG) evaluation are) compared with some other performance indicators. Eight cases are defined and evaluated with all performance indicators.

The study is focussing on the residual Municipal Solid Waste (MSW) and similar commercial waste, difficult streams that remain after all other possibilities of the waste hierarchy are exhausted. For this waste, the normal choices are landfilling or combustion (incineration) in Waste-to-Energy (WIE) plants. Of course incineration should only be considered as the alternative for landfilling. Only an effective outlet for the difficult material will allow breaking the impossible competition of Reuse, Recovery and Recycling (RRR) with low landfilling prices. This is so, because of the relative high price, WIE is never a competitor to RRR. But by avoiding the cheap outlet to landfilling it is an effective stimulus for RRR. This is also shown by the data of countries in EU where a high RRR is corresponds perfectly with the installed waste-to-energy capacities[1][2].

The many variations in mechanical sorting of residual MSW are not dealt with in this note. They can be considered as combinations of partial landfilling, partial WIE (e.g. in the form of RDF), and some other processes like biological drying, composting or digestion (biological materials) and reuse of specific fractions (e.g. iron, aluminium, plastics). Their