Application of Thermal Spray Techniques for Combating High Temperature Corrosion in Waste-to-Energy Boilers

Dianyi Yan, Columbia University, New York, NY 10027, USA

In the United States, about 389 million tons of Municipal Solid Waste (MSW) are produced every year. The only proven alternative to landfilling for the treatment of post-recycled MSW is thermal treatment or waste to energy (WTE) of MSW for the production of energy and materials. MSW contains materials with high chlorine content, such as chlorinated plastics, polyvinylchloride (PVC), etc. This in combination with the temperature level of superheater tubes, 300-550°C, and the high concentration of alkaline metals (Na, K, etc), heavy metals (Pb, Zn, etc), and sulfates during combustion causes severe high temperature corrosion (HTC) which may lead to material wastage, tube leakages, unplanned shutdowns of the boiler, and shortened lifetime of the tube. Thus, searching effective methods to prevent HTC problem and extend the lifetime of superheat tubes is an urgent issue. An appropriate choice of the combination of thermal spray techniques and coating materials can effectively prevent HTC problem inside WTE plants. The aim of this project is to identify available thermal spray techniques and coating materials for combating HTC in WTE boiler.

Available Thermal Spray Techniques:
- Flame Spray
- Electric Arc Spray
- Plasma Spray
- High Velocity Oxy-Fuel (HVOF) Spray
- High Velocity Air-Fuel (HVAF) Spray
- Detonation Spray
- Warm Spray

Selection of Coating Materials:
- Amorphous Alloy (e.g. Fe-based)
- Ni-based Alloy
- Cermet
- Ceramics
- ... Materials with high nickel (Ni), chromium (Cr), and molybdenum (Mo) contents have been proved to be a considerable choice to provide outstanding corrosion protection under high temperature.

HVOF Coatings performed better than X20 or SAN25, but nickel-based alloy A263 performed best. However, due to its high price, coatings offer an attractive alternative for corrosion protection. Diam4000_DI and SHS9172_CJS presented the best corrosion performance of the coatings due to their composition of Cr and Mo.

Other factors related to thermal spray techniques that can affect the quality of thermal spray coatings:
- Applied techniques
- Raw material
- Gun
- Nozzle

Further Study:
This project is going to select the most applicable thermal spray techniques for WTE boilers. Particular coating material and coating thickness will be determined. Economic feasibility will be analyzed.

References: