Thermo-Gravimetric Analysis (TGA) of Combustion and Gasification of Styrene-Butadiene Copolymer (SBR)

Marco J. Castaldi

Department of Earth & Environmental Engineering

Henry Krumb School of Mines, Columbia University

May 24, 2005
Presentation

- Introduction
- Experimental Setup
- Results
 - Experimental
 - Modeling
- Conclusions
- Future Work
Introduction

- Approximately 270 million tires disposed in U.S.
- Tires do not biodegrade
- Reprocessing is very energy intensive because of strength and makeup
- Makeup (rubber and inorganic content) are well suited for energy production and material recovery
Objectives

- Understand the thermal decomposition process of tires under various conditions
 - Various atmospheres
 - Particle size (mass burn vs other)
 - Primary reaction mechanisms

- Determine/develop higher efficiency, lower emission firing techniques
 - Exhaust gas recirculation
 - Placement of fuel and air injection
 - Enhancement techniques

- Conduct realistic simulations for technology evaluation and application development
Experimental Setup

- **Tire Composition**
 - Natural Rubber
 - Poly-isoprenes
 - Carbon Black
 - Sulfur
 - Inerts and metals

- **Major synthetic rubbers**
 - *Styrene Butadiene Rubber (SBR)*
 - Styrene rubber (SR)
 - Butadiene Rubber (BR)
Experimental Setup

Heated tubing (120°C)

Const. Temperature
Water circulation

Micro-GC

Calibrated Rotometers

Certified gases (pure and mixtures)

N₂
O₂
H₂

80ml/min
20ml/min

NAWTEC Conference – May 24-26, 2005, Orlando, FL
Experimental Conditions

Current conditions found in combustors
- Gasification/ pyrolysis (100% N₂)
- Air atmosphere (20% O₂, 80% N₂)
- Lean atmosphere (6% O₂, 94% N₂)

Possible enhancements for higher efficiency
- Enriched atmosphere (30% O₂, 70% N₂)
- Hydrogen “spiking” (3% H₂, 97% N₂)
Thermal degradation for SBR in N_2

\[\int (DTA) \, dt = \alpha \] Weight loss fraction

NAWTEC Conference – May 24-26, 2005, Orlando, FL
Combustion Comparisons

Temperature (°C)

350 400 450 500 550 600

Mass (%)

0 10 20 30 40

6.9% O₂

Air

30% O₂

6.9% O₂

NAWTEC Conference – May 24-26, 2005, Orlando, FL
Chemical Structure of SBR;
25% Styrene, 75% Butadiene Cross linked Co-Polymer
Gas Analysis from TGA; N\textsubscript{2} Atmosphere, 20K/min

- **n-Butane**
- **Ethylene**
- **Hydrogen**
- **n-Hexane**
Hydrogen Spiking

10 K/min
Little enhancement

40 K/min
Increased enhancement

NAWTEC Conference – May 24-26, 2005, Orlando, FL
Kinetic Expression Development

\[\alpha = \frac{W(t) - W_i}{W_i - W_f} \]

\[\frac{d\alpha}{dt} = k(1 - \alpha)^n \]

\[k = A T^n \exp\left(\frac{-E}{RT}\right) \]

\[\frac{d\alpha}{dT} = \frac{A_0}{\beta} T^{1/2} (1 - \alpha)^n \exp\left(\frac{-E}{RT}\right) \]

\[\frac{d^2\alpha}{dT^2} = \frac{1}{\beta} \left(\frac{d\alpha}{dt} \right) \left[n(1 - \alpha)^{-1} \left(-\frac{d\alpha}{dT} \right) - \frac{E}{RT^2} + \frac{1}{2} T^{-1} \right] \]

Reaction Order Calc.

Activation Energy Calc.

\[n = \frac{\beta \left(\frac{d^2\alpha}{dT^2} \right) / \left(\frac{d\alpha}{dt} \right) - E / RT^2 - 1/2 T^{-1}}{\left(-\frac{d\alpha}{dT} \right)} \left(1 - \alpha \right) \]

\[E = RT \ln \left[\frac{\left(\frac{d\alpha}{dt} \right)}{A_0 T^{1/2} (1 - \alpha)^n} \right] \]
Kinetic Expression Development

Factors, \(A_0 \) [s\(^{-1} \) k\(^{-1/2}\)]

| Heating rate, \(\beta \) [K/min] | 100\% N\(_2\) | 97\% N\(_2\) + 3\% H\(_2\) | Air | \(\text{O}_2 \) enhanced |
|-----------------------------------|----------------|----------------|------|----------------|----------------|
| 10 | 4.02E+12 | 2.55E+11 | 4.64E+09 | 2.87E+11 |
| 20 | 3.84E+12 | 2.42E+11 | 4.39E+09 | 2.72E+11 |
| 30 | 3.71E+12 | 2.36E+11 | 4.24E+09 | 2.66E+11 |
| 40 | 3.67E+12 | 2.30E+11 | 4.13E+09 | 2.59E+11 |

Graphical Representation

- **Heating rate, \(\beta \) [K/min]**
- **\(\ln \beta \)**
- **Factors, \(A_0 \) [s\(^{-1} \) k\(^{-1/2}\)]**

Legend
- **Primary 100\% N\(_2\)**
- **Primary 97\% N\(_2\) + 3\% H\(_2\)**
- **Primary air**
- **Secondary air**
- **Primary 70\% N\(_2\) / 30\% O\(_2\)**
- **Secondary 70\% N\(_2\) / 30\% O\(_2\)**

NAWTEC Conference – May 24-26, 2005, Orlando, FL
Summary of Kinetic Parameters

Activation energy [J/mol]

<table>
<thead>
<tr>
<th>Heating rate, β [K/min]</th>
<th>$97% \text{ N}_2 + 3% \text{ H}_2$</th>
<th>Air</th>
<th>O_2 enhanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.84E+05</td>
<td>1.60E+05</td>
<td>1.75E+05</td>
</tr>
<tr>
<td>20</td>
<td>1.87E+05</td>
<td>1.62E+05</td>
<td>1.82E+05</td>
</tr>
<tr>
<td>30</td>
<td>1.89E+05</td>
<td>1.64E+05</td>
<td>1.82E+05</td>
</tr>
<tr>
<td>40</td>
<td>1.89E+05</td>
<td>1.65E+05</td>
<td>1.89E+05</td>
</tr>
<tr>
<td>AVG</td>
<td>1.87E+05</td>
<td>1.63E+05</td>
<td>1.82E+05</td>
</tr>
</tbody>
</table>

Overall reaction order, n [-]

<table>
<thead>
<tr>
<th>Heating rate, β [K/min]</th>
<th>$97% \text{ N}_2 + 3% \text{ H}_2$</th>
<th>Air</th>
<th>O_2 enhanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1.33</td>
<td>1.35</td>
<td>0.01</td>
</tr>
<tr>
<td>20</td>
<td>1.3</td>
<td>1.2</td>
<td>0.35</td>
</tr>
<tr>
<td>30</td>
<td>1.26</td>
<td>1.13</td>
<td>0.41</td>
</tr>
<tr>
<td>40</td>
<td>1.22</td>
<td>1.06</td>
<td>0.19</td>
</tr>
<tr>
<td>AVG</td>
<td>1.28</td>
<td>1.19</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Polycyclic Aromatic Hydrocarbon (PAH) (detected to date)

Styrene
Phenanthrene
Naphthalene
Anthracene
Pyrene

NAWTEC Conference – May 24-26, 2005, Orlando, FL
Aspen™ Kinetic Simulation

- **Combustion**\(^2\)

 \[
 \text{Tire} + \text{O}_2 \rightarrow \text{CO}_2 + \text{H}_2\text{O} \quad \Delta H_r = -35 \text{ MJ/kg}
 \]

- **Boudouard**\(^3\)

 \[
 \text{C}_\text{(s)} + \text{CO}_2 \rightarrow 2 \text{ CO} \quad \Delta H_r = 11 \text{ MJ/kg}
 \]

- **Steam reforming**\(^3\)

 \[
 \text{C}_\text{(s)} + \text{H}_2\text{O} \rightarrow \text{CO} + \text{H}_2 \quad \Delta H_r = 14 \text{ MJ/kg}
 \]

- **Water-gas shift**\(^3\)

 \[
 \text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2\text{O} \quad \Delta H_r = -1.5 \text{ MJ/kg}
 \]
Reisman JI, Lemieux PM. “Air emissions from scrap tire combustion.” Clean Air Technology Center EPA, 1997.
Simulation Results

Combustion

Gasification

NAWTEC Conference – May 24-26, 2005, Orlando, FL
Combustion-Gasification System

1º Air

Sludge/Tire Mixture

Tires

Combustion Zone
(Tire + O₂ → CO₂ + H₂O + heat)

Syngas

Gasification Zone
(C + H₂O + CO₂ + heat → CO + H₂)

2º Air

Ash

NAWTEC Conference – May 24-26, 2005, Orlando, FL
Conclusion

- The two-stage combustion of the SBR is due to the different oxidation rates of the unsaturated hydrocarbon backbone.
- Hydrogen spiking shows enhancements at high heating rates (likely found in combustors)
- Simulations match closely to experiments, refinements needed
- Potential for PAH formation during combustion
Future Work

- Investigation will consist of GC/MS analysis of different atmospheres.
- The study of formation of Polycyclic Aromatic Hydrocarbon (PAH) will be carried out.
- Further development of mechanistic understanding.
Acknowledgements

Eilhann Kwon – PhD Student
Brian Wiess – Undergraduate EEE student

Waste-To-Energy Research and Technology Council

NAWTEC Conference – May 24-26, 2005, Orlando, FL