Human Health and Ecological Impact Analysis for a New Renewable Energy Facility in Florida
S.A. Foster & P.C. Chrostowski -- CPF Associates, Inc. -- Bethesda, Maryland

Introduction

Project Overview

- Conducted a human health and ecological impacts analysis
- Assessed potential impacts associated with stack emissions from existing RDF facility and proposed WTE facility combined
- Not a formal requirement for the permitting process
- Conducted to ensure that the new facility would not have an adverse impact on human health and the environment

Facility Location

Palm Beach County, Florida

Facility Description

Located in 1,320 acre Palm Beach Renewable Energy Park

Human Health Risk Assessment

Methods

- **How is a Risk Assessment Conducted?**
 - USEPA guidance – refined analysis
 - Evaluated risks for:
 - 10 selected chemicals or chemical classes: metals, PCDDs/PCDFs, acid gases, ammonia
 - different types of individuals (adults, children, infants)
 - varying combinations of exposure pathways (inhalation, ingestion of produce, animal products & fish, incidental ingestion of soil, infant ingestion of breast-milk)
 - Chemical-specific toxicity data obtained from USEPA-recommended databases
 - Incorporated many site-specific inputs: emission rates, site-specific surveys, meteorology, inputs for environmental fate and transport models, exposure pathways, exposure locations
 - Calculated environmental concentrations using mathematical modeling: air dispersion and deposition, environmental fate and transport

Evaluation of PCDD/PCDF Intakes

Long-term cancer risk – Compared to 1 in 100,000 (1E-5) USEPA benchmark cancer risk and 1 in 1,000,000 (1E-6) State benchmark cancer risk

Long-term noncancer effects – Compared to 1.0 USEPA and State benchmark hazard index and 0.25 supplemental USEPA benchmark hazard index

Evaluation of Ecological Risks

Exposure to dioxins & furans – Compared to typical background levels

Conclusions

- The new facility would not have an adverse impact on human health or the environment
- Potential risks associated with stack emissions from the two assessed facilities were below regulatory and other benchmark risk levels for both human health and ecological receptors
- Calculated incremental environmental concentrations associated with stack emissions from the two facilities would not measurably increase the typical concentrations of chemicals in the environment
- The results were consistent with studies of other modern waste-to-energy facilities that are designed, constructed and operated in accordance with federal and state laws and regulations
- Similar methodologies can be used to assess alternative waste conversion technologies