Maximize ROI on Waste Through Cutting Edge Plasma Gasification Technologies

Presented
At
Waste-Based Energy
Toronto Canada
November 23, 2009

Jeff Surma
President and CEO
S4 Introductory Statements

Disclaimers:

• S4 has made certain assumptions regarding conditions, events and circumstances that may occur in the future in performing analysis and projecting future operations that are summarized by this presentation and the associated paper. While S4 believes such assumptions are reasonable and the methodologies S4 has used are appropriate for the purposes set forth in this presentation; depending on conditions, events and circumstances that may occur but are unknown at this time, actual results may materially differ from those projected in this presentation and associated paper.

• The use of this presentation, the associated report or any information presented or otherwise derived from the presentation (collectively, the “Presentation Materials”), whether written or verbal, shall constitute the user’s waiver and release of S4 and Jeff Surma from and against all claims and liability, including, but not limited to, any liability for special, incidental, indirect, or consequential damages, in connection with such use (“Claims”). In addition, use of the Presentation Materials shall constitute an agreement by the user to defend and indemnify S4 from and against any Claims. To the fullest extent permitted by law, such waiver, release and indemnification shall apply notwithstanding the negligence, strict liability, fault, willful misconduct or breach of warranty of S4. The benefit of such releases, waivers, releases and indemnification shall extend to S4’s related companies, contractors and the directors, officers, members, employees and agents. S4 RETAINS ALL RIGHTS TO THE INFORMATION AND TECHNOLOGY DESCRIBED IN THE PRESENTATION, MATERIALS; NOTHING CONTAINED HEREIN SHALL CONSTITUTE A WAIVER OF S4’S INTELLECTUAL PROPERTY RIGHTS PERTAINING TO THE SUBJECT MATTER OF PRESENTATION MATERIALS.

• S4 makes no warranty, express or implied relating to the Presentation Materials. User accepts the sole risk of any such use.
Presentation Overview

- Gasification Technology Options
- Environmental Impacts
- Energy Optimization
- Project Considerations
- Application to MSW
S4 Energy Solutions

- Joint Venture Formed to Commercially Deploy Gasification of Waste
- 50/50 Joint Venture Between WM and InEnTec
- Venture Officially Launched in February 2009
- JV to Operate in Collaboration with, but Independent of JV Partners
Gasification 101

Base Definition: Gasification generally involves the conversion of carbonaceous materials into primarily synthesis gas (CO and H2) through partial oxidation and/or steam reforming reactions, for example:

\[
- C_xH_y + xH_2O \rightarrow xCO + (x + y/2)H_2 \\
- C_xH_y + (x/2)O_2 \rightarrow xCO + (y/2)H_2
\]
What is Plasma Gasification?

Power Supply

Electrodes

Very High Temperature Region
Gasifiers for Waste Conversion

- Primary Categories of traditional Gasification Technology:
 - Fixed Bed
 - Downdraft
 - Updraft
 - Fluidized bed (bubbling and circulating)
- Pyrolysis Systems
Up-Draft (Counter Current) Gasifier

- Waste
- Synthesis Gas

- Solids Flow
- Gas Flow

- Zone 1
- Zone 2
- Zone 3

- Ash/Slag
- Gasification Agent
Down-Draft (Co-Current) Gasifier

Waste

Gasification Agent

Solids Flow

Gas Flow

Zone 1

Zone 2

Ash/Slag

Synthesis Gas
PEM™ System Downdraft – Plasma Gasifier

Diagram showing the components and flow of gases in a Plasma Gasifier system.
PEM™ Unit
Environmental Performance
For
Plasma Technology
Potential Waste Volume Reduction

1 Ton = 182 Cu Ft

2 Cu Ft Recycled
Ultra Low Emissions

- Advanced Plasma processes typically exceed US EPA emission requirements by an order of magnitude depending on the ultimate use of the synthesis gas
 - Dioxin emissions 10x to 100x lower than US EPA requirements
 - No detectible mercury emissions
Potential Carbon Credits

- Reduced Transportation
- Production of alternative fuels
- Reduced net CO$_2$ emissions in comparison to other technology options
- Increased efficiency and use of landfills
- Potential to capture and sequester CO$_2$
Gasification Options

And

Project Considerations
Primary Project Parameters

- Waste Feedstock
- Facility Scale
- Energy Off-Take
- By-products
- Facility Integration Considerations
- Permitting
- Economic Incentives and Subsidies
Feedstock Considerations

• Availability and Quality

• Advanced Plasma Gasification is designed to provide flexibility
 – Pretreatment requirements minimized
 – Blends
 – High Conversion Efficiency
Capacity Considerations

- Is Bigger Better?
 - Risk
 - Flexibility
 - Modular
Energy Off-Take Products

- Syngas fuel
- Electric Power (reciprocating engines)
- Hydrogen
- Methanol
- Ethanol
- Other GTL options (e.g. Syn-diesel)
Potential Products

- AMMONIA
- UREA
- FORMAL-DEHYDE
- RESINS
- METHANOL
- DME
- ACETIC ACID
- POLYURETHANE
- CARBON MONOXIDE
- PHOSGENE
- COAL
- BIOMASS
- WASTE
- GASIFICATION
- HYDROGEN
- OXO ALCOHOLS
- DETERGENTS, PLASTICIZERS
- FISHER-TROPSCH
- FUELS, WAXES, OTHERS
- SNG
- IC RECIP ENGINE
- ELECTRIC POWER
- HYDROGEN
- FUEL CELL ELECTRIC POWER
- GAS TURBINES
- ELECTRIC POWER
By-Products

- Ash vs Slag vs Glass
- Liability
- Cost
- Completely Inert
Facility Integration

- Utilities
- Staff-Sharing
- Host - Customer for Off-take
 - Primary
 - Secondary
Permitting

• Scale
 – Local feedstock
• Public Receptivity
• High Environmental Performance
• Low Carbon Footprint
Potential Incentives

- Carbon Credits
- RECs
- Tax Credits
- Producer Credits
- Various State and Federal
- Others
Opportunities for MSW in North America
Mass Balance Example (Varies with Waste Composition)

Waste Feed: 125 Tons/day

Plasma Gasifier

- Syngas Cleaning

- Hydrogen Production
 - Estimates: ~ 2 to 3 MMSCF/day

- Alcohol Production
 - ~6000 to 10000 gal/day

- Electricity Production
 - ~ 3 to 5 MW net

Thermal Energy
 - ~ 40 to 55 MMBTU/hr

Products:
- Glass
- Metal
Potential Energy Off-Take Value

$ (US) / Ton Waste

- Syngas: $6/MMBtu
- Hydrogen: $6/MMBtu
- Electricity: $0.10/kWh
- Alcohol: $2/gal
Summary

• Conversion of waste into clean energy products can be economically viable option in the near term

• Risk can be mitigated through proper project analysis and deployment
 – Start Small
 – Build in Flexibility