This paper offers some interesting insights into the development of the planned resource recovery system in Berkeley. It is noteworthy that the City, in assessing its solid waste management options, carefully analyzed a variety of low-technology/waste reduction measures, in addition to the thermal processing energy recovery systems. U.S. EPA considers both approaches to be viable and mutually compatible waste management techniques. Naturally, the key to successfully implementing either type of system is the ability to contract with strong, reliable markets for the recovered products.

The evaluation of alternative resource recovery technologies which is presented in the paper raises some questions. Although no data is presented regarding the waste quantities to be processed or the assumptions used in calculating energy revenues, the estimates of the net per-ton disposal costs associated with the different systems would seem somewhat inconsistent with the findings of similar analyses done for other projects. The nearly five-fold cost differential between modular incineration and European-type waterwall systems would appear especially questionable.

The authors present a chronology of the long-term development of a site-specific system for resource and energy recovery. One can easily follow the development of a program designed to enlist public support on a progressive basis beginning with source separation and proceeding to central processing. It is indicated that further study is being undertaken to determine whether source separation and recovery of newspaper, glass and metal containers is compatible with central processing and energy recovery.

In the conduct of a similar feasibility study in Connecticut in the early 1970's, the discussor estimated the impact of source separation of newsprint and corrugated cardboard from a waste-stream influent to a proposed energy recovery incinerator. It was estimated that a moderately successful source separation program would have reduced the daily tonnage by about ten percent and reduced the heating value of the refuse by about five to ten percent. It was concluded that source separation would not have a significant adverse impact on the proposed energy recovery plan for the Connecticut municipality.
No mention is made in this paper of considerations for codisposal of sewage sludge with solid waste. If dewatered sludge is available, it may enhance the heating value of the fuel and the economics of the energy recovery system.

The summary economic data presented are not in sufficient detail to permit an evaluation of cost centers for the seven types of systems that were studied by the City and its consultant. In a time of rapidly increasing labor energy costs, both municipal officials and consultants are interested in the sensitivity of project costs to the costs of labor and energy.