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[1] This paper shows how Gumbel-distributed data can be related to explanatory variables
by using generalized linear models (GLMs) fitted by using a modified form of the
iteratively weighted least squares algorithm (IWLS). Typical applications include (1)
testing for trend in annual flood data, as a possible consequence of changing land cover or
other factors; (2) testing for trend in annual maximum rainfall intensities of different
durations, as a possible consequence of climate change; and (3) testing how annual
maximum rainfall intensity is related to weather conditions at the times that annual
maximum intensities were recorded. Given a first estimate of the Gumbel scale parameter
a, the coefficients b of explanatory variables x are estimated by casting the model in GLM
form, and the scale parameter a is updated by solution of relevant maximum likelihood
equation for this parameter. The parameters a, b can be readily estimated using currently
available statistical software for fitting GLMs, which can also be used to test the
significance of trends in annual flood data for which the Gumbel distribution is a plausible
hypothesis. A plotting procedure to indicate departures from the Gumbel hypothesis is
also given. The proposed procedure avoids the illogicality in which, when a trend in flood
data is suspected, it is tested either by linear regression methods that assume Normally
distributed residuals, or by nonparametric methods, both of which discard the Gumbel
hypothesis. Simulated samples from Gumbel distributions were used to compare estimates
of linear trend obtained by (1) the GLM procedure and (2) straightforward use of a
Newton-Raphson procedure to locate the maximum of the likelihood surface; the GLM
procedure converged more rapidly and was far less subject to numerical instabilities.
Simulated samples from Gumbel distributions were also used to compare estimates of a
linear trend coefficient b given by the GLM procedure, with estimates of b obtained by
simple linear regression (LR). The variance of the distribution of GLM estimates of b was
less than the variance of the distribution of LR estimates, while comparison of the powers
of the two tests showed that GLM was more powerful than LR at detecting the existence
of small trends, although for large linear trends there was little to choose between the two
methods. INDEX TERMS: 1821 Hydrology: Floods; 1860 Hydrology: Runoff and streamflow; 1630

Global Change: Impact phenomena; 1694 Global Change: Instruments and techniques; KEYWORDS: Gumbel,

trend, power

1. Introduction

[2] In regions where climate or land use is changing, the
common assumption that hydrologic time series are sta-
tionary must be called into question. Annual flood records
(typically, sequences of annual maximum daily flow) may
well show changes over the years as a consequence of more
rapid runoff associated with increased urbanization, changes
to agricultural practices, or deforestation within the water-
shed [Bruijnzeel, 1990, 1996; Sahin and Hall, 1996]. In the
absence of time trends, the Gumbel distribution

f
�
y;a;m

�
¼ a exp �a y� mð Þ � exp �a y� mð Þf g½ �

�1 < y < 1 ð1aÞ

with cumulative probability

F y;a;mð Þ ¼ exp �exp �a y� mð Þf g½ � ð1bÞ

has been widely used for estimating the magnitudes of floods
with different (‘‘T-year’’) return periods, because of the ease
with which its quantiles can be calculated, the flood with
return period T years being the quantile corresponding to
cumulative probability 1 � 1/T. As is well known [e.g.,
Stedingeret al., 1993], the location and scale parameters in (1)
arem anda, while themean, standard deviation and skewness
are m +g/a, p= a

ffiffiffi
6

p� �
and 1.1396 respectively, where g is

Euler’s constant, g = 0.577215. . . and p = 3.14159. . .. There
is now a very wide literature on the use of the Gumbel
distribution in flood frequency studies [e.g., Natural
Environment ResearchCouncil, 1975; Stedinger et al., 1993].
[3] The Gumbel distribution is also extensively used in the

study of extreme rainfall intensities. Where annual maximum
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intensities are recorded over durations D1, D2, . . . Dk, a
Gumbel distribution is fitted to data from each duration
[e.g., Buishand, 1993], and the quantiles of the k dis-
tributions are plotted as intensity-duration-frequency
(IDF) curves for subsequent use in urban planning. IDF
curves are typically used for flood peak estimation in
techniques such as the rational method [Pilgrim and
Cordery, 1993].
[4] Use of the Gumbel (or indeed any other) distribution

to assess the frequency of extreme events from a historic
record of annual maxima, depends critically on the assump-
tion that the distribution from which the data are a sample
remains constant over time. If the historic flow record
shows a time trend, the concept of a flood with return
period T years becomes meaningless. It may still be possible
to make statements about future flood characteristics using
rainfall-runoff models that incorporate assumptions about
future weather patterns (where nonstationarity is believed to
be the result of climate change), and/or assumptions about
future land use changes (where nonstationarity may be
caused by urbanization, deforestation, or change in agricul-
tural practices). But the essential point is that frequency
statements can no longer be made from a statistical analysis
of historic records alone, since these will no longer be a
guide to future conditions.
[5] The Intergovernmental Panel on Climate Change

(IPCC) predicts changes, both in frequency and severity
of intense rainfall, as a consequence of global warming;
Table SPM 1 of the Intergovernmental Panel on Climate
Change (IPCC) [2001] ‘‘Impact, Adaptation and Vulner-
ability’’ foresees ‘‘more intense precipitation events, very
likely over many areas’’, with ‘‘increased susceptibility to
flooding’’. Detection of time trends in records of annual
floods and annual maximum rainfall intensity will become
of increasing importance if the IPCC predictions come to
pass. Even with existing records, regional increases in the
amount and intensity of North American rainfall have been
reported by Vinnikov et al. [1990], Guttman et al. [1992],
Groisman and Easterling [1994], and Karl and Knight
[1998]. In analyses of flood flows, Changnon and Kunkel
[1995] found significant upward trends in floods in the
northern Midwest during the period 1921–1985, while
Olsen et al. [1999] found large and statistically significant
upward trends in flood flows over the last 100 years in the
Upper Mississippi and Missouri rivers. However, when the
effects of spatial correlation between flood flows were taken
into account, the significance of such trends in flood flows
was greatly diminished [Douglas et al., 2000]. The assess-
ment of time trends in flood flows therefore requires great
care and is likely to become increasingly important if and
when effects of climate change become more apparent.
[6] Present procedures for detecting tends in annual flood

flows or maximum rainfall intensities are generally of two
types: (1) linear regression analysis of the annual maxima
on year number, for which the residuals, and hence the
annual maxima themselves, are assumed to follow a Normal
distribution, possibly with time-varying mean [Hirsch et al.,
1993; Salas, 1993]; (2) nonparametric tests such as the
Mann-Kendall trend test [Salas, 1993] which, being non-
parametric and rank-based, makes no assumption concern-
ing the distribution of the data. Neither procedure utilizes
the fact that the annual maxima can be expected to follow a

Gumbel (or perhaps some other extreme value) distribution
when no significant trend is detected. This paper considers
the case where the working hypothesis is that data follow a
Gumbel distribution, in which a time trend may or may not
exist, and for which a test of trend is required. The
objectives of the present paper are to show (1) how the
iteratively weighted least squares (IWLS) algorithm [Green,
1984; McCullagh and Nelder, 1989, pp. 40–43] provides a
test for the existence of a time trend in data that can
plausibly assumed to be Gumbel-distributed, whether or
not trend exists; (2) how the Gumbel assumption can be
checked graphically when a significant time trend is
detected; (3) how the test for trend based on the Gumbel
hypothesis compares with the test for trend using simple
regression methods. The emphasis of the paper is on testing
for trend in the mean of a Gumbel distribution, but the same
procedure can in principle be adapted to test for trend in the
Gumbel scale parameter a. Where a significant time trend in
the Gumbel mean is detected, however, there will usually be
little point in taking the further step of testing for trend in a.
Nonstationarity in the mean having been demonstrated,
calculation of quantiles, T-year floods (and IDF curves in
the case of rainfall intensity data) are no longer relevant and
the possibility of nonstationarity in a becomes of marginal
interest.

2. Gumbel Distribution With Time-Variant Mean

[7] The present paper uses the Gumbel distribution with
time-variant mean, which in its simplest form is obtained by
replacing the distribution in (1) by

f y;a;m; bð Þ ¼ a exp �a y� m� btð Þ � exp �a y� m� btð Þf g½ �
ð2Þ

where t is a time variable, so that (2) reduces to (1) when
b = 0. The mean of the distribution in (2), for a given time t,
is (m + g/a) + bt, which as t varies is a line with slope b and
intercept (m + g/a). More elaborate time trends can
obviously be explored by substituting the single-parameter
trend bt by the k-parameter trend bTx, where b = [b1, b2,. . .
bk]

T, x = [ f1(t), f2(t),. . .. fk(t)] and the fi(t) are functions of
time, typically polynomials or harmonic functions. Even
where trends over time are absent, it may still be of interest to
explore the relation between a Gumbel variate and one or
more explanatory variables. For example, in an analysis of
annual maximum rainfall intensity, it may be of interest to
explore whether the observed annual maxima are related to
wind direction and velocity, or to time of day, at which the
maximum intensities occurred. We illustrate maximum
likelihood tests for the hypothesis H0: b = 0, and show
how the powerful family of GLMs can be used to extend the
calculation in a straightforward manner when k, the number
of explanatory variables, is larger.

3. Testing the Hypothesis That No Trend Exists
Against the Alternative of a Linear Trend

[8] We assume that a sequence of N data values is
available for making inferences about time trends, and for
simplicity, assume only one trend parameter, although any
number of trend parameters could be tested (subject to
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limitations imposed by the record length). Thus the data
value yi in the ith year is taken to be an observation of a
random variable Yi having a Gumbel distribution with
location parameter E[Yi | ti] = (m + g/a) + bti and such that
Yi and Yk are independent for i 6¼ k. The usual assumption is
therefore made that annual floods are independent from year
to year. The log likelihood function, regarded as a function
of the three parameters a, m, b for response variable y given
explanatory observations t is

loge L ¼ N logea� Na�yþ Namþ Nab�t

�
XN
i¼1

exp �a yi � m� bti½ �ð Þ: ð3Þ

where �y;�t are means over the N data values and N times
respectively. With just three parameters, this function can be
maximized by the Newton-Raphson method, in which each
of the three equations @logeL/@m = 0, @logeL/@a = 0,
@logeL/@ b = 0 is expanded as a Taylor series in �m, �a,
�b, second- and higher-order terms are discarded, and the
linearized equations are solved for the corrections �m, �a,
�b to be added to the starting values m0, a0, b0, the whole
calculation being iterated until a convergence criterion is
satisfied. The Newton-Raphson method can readily be
extended to the case where there is a vector b of trend
parameters, but it has two disadvantages: (1) as a
computational procedure, it fails to take account of the
linear structure in the parameters m, b. The procedure based
on a GLM fitted by the IWLS algorithm, described later in
this paper, utilizes this linear structure, and is therefore more
efficient computationally. (2) Although it estimates the trend
parameters b, it does not of itself provide tests of hypotheses
that some or all of the trend coefficients are zero. Thus with
the single trend parameter shown in equation (2), a test of
the hypothesis H0: b = 0 requires a second Newton-Raphson
calculation by maximizing equation (3) in which b has been
set equal to zero. The statistic �2 {logeL(H0) � logeL(H1)}
is then asymptotically distributed as c2 with one degree of
freedom. Each time that a hypothesis must be tested
concerning inclusion or exclusion of a trend parameter,
additional computer programming is required, both to
calculate the maximized likelihood function, and to
calculate the corresponding likelihood-ratio statistic. While
this presents no intrinsic difficulty, most of this additional
calculation can be avoided by using readily available GLM
procedures to fit the trend parameters b and to test them for
statistical significance.

4. Use of GLMs To Fit Trend Parameters and
Test Their Statistical Significance

[9] GLMs constitute an extension to multiple regression
models, a major difference being that the data are no longer
required to be normally distributed. In common GLM
usage, the data may be a sample from any distribution
belonging to the exponential family defined as follows.
Denoting by y an observation of the random variable Y, then
the distribution of Y belongs to the exponential family if it
can be written in the form [McCullagh and Nelder, 1989]

fY y; q;fð Þ ¼ exp y q� b qð Þð Þ=a fð Þ þ c y;fð Þf g ð4Þ

for some specific functions a( ), b( ), c( ). It can be shown
that the Poisson, binomial, gamma and inverse Gaussian,
as well as the normal, all have distributions that can be
written (after some algebraic manipulation) in the form
equation (4) [McCullagh and Nelder, 1989]. For all
distributions in the exponential family, parameters are
estimated by ‘‘sufficient’’ statistics that utilize all informa-
tion on them that is provided by the data, whatever the
sample size. If f is known, equation (4) defines an
exponential family model with canonical parameter q; if f
is unknown, it may or may not be an exponential family
model. In exponential family models, the maximum
likelihood estimator of q is a sufficient statistic for this
parameter; the mean and variance of the random variable Y
are related to b(q) and a(f) by

E Y½ � ¼ m ¼ b’ qð Þ ð5aÞ

var Y½ � ¼ b’’ qð Þa fð Þ ð5bÞ

where b’;(q) and b’’(q) are the first and second derivatives of
b(q) with respect to q. GLMs also extend multiple regression
theory by allowing the mean E[Yi] = mi of the ith data value
to be related to explanatory variables x not only by means of
E[Yi] = xi

T b, as in ordinary multiple regression, but also by
the more general form g(mi) = xi

T b where g(.) is termed the
link function. Goodness of GLM fit is measured by the
Deviance, denoted by D, which is related to the difference
between two log likelihoods, one for the model whose fit is
to be assessed, and the other for a ‘‘full’’ model in which
each observation is regarded as sampled from a distribution
with different mean value. Thus the algebraic expression for
the deviance D differs for each member of the exponential
family. For the special case in which the distribution of Yi
is Normal, and the link function is the identity function
g(mi) = mi = xi

T b, the deviance becomes simply the residual
sum of squares (RSS) of the multiple regression. In fact
GLMs are fitted by minimizing the Deviance statistic,
analogous to minimizing the RSS when fitting a multiple
regression.
[10] We now come to the relevance of this theory to

fitting the Gumbel distribution in which the parameter m in
equation (1) is replaced by xT b where x is a vector of
explanatory variables (in the last section, x was a vector
with only one explanatory variable: namely t). Suppose for
the moment that the scale parameter a is known. Then from
the N data values yi {i = 1. . . N}a new sequence zi can be
formed from the transformation z = �exp(�ay). The
Gumbel distribution equation (1) can then be written in
the exponential family form equation (4) as

fz zð Þ ¼ exp ½z qþ loge qþ loge �a zð Þ� ð6Þ

where z = �exp(�ay), q = exp(am). As the original random
variable Y ranges from �1 to 1, the new variable Z
ranges from �1 to zero, and so is negative. Comparing
equation (6) with the required form equation (4), we see
that a(f) = 1, b(q) = �loge(q), and c(y, f) = loge(�az),
recalling that a is assumed known for the present. From
equation (5a), m = b0(q) = �1/q, and from equation (5b),
var[Z ] = b00(q) a(f) = 1/q2 (since a(f) = 1). From the
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definition of the deviance [McCullagh and Nelder, 1989, p.
33],

D ¼ 2
XN
i¼1

zi ~qi � q̂i
� �

� b ~qi
� �

þ b q̂i
� �n o

ð7Þ

where ~qi and q̂i are estimates of the parameter q under the
full and current models respectively. Since, q = 1/m we have
~qi = 1/zi and q̂i = �1/fi, where fi is the fitted value for the ith
observation zi under the current model, calculated according
to the IWLS algorithm [McCullagh and Nelder, 1989, p.
40–43].
[11] The above development assumes that the scale

parameter a is known, so that the new variable z =
�exp(�ay) can be calculated from the original data values
yi. In practice, a is not known, and must be estimated. One
solution is to estimate it from the equation @logeL/@a = 0,
with m̂ and b̂ temporarily held fixed. The following algo-
rithm provides for the iterative estimation of a and the
parameters b that are the coefficients of the explanatory
variables x:
1. Estimate a from the data, ignoring trend, from the

usual method of moments estimator ~a ¼ p= ~s
ffiffiffi
6

p� �
, where ~s

is the standard deviation of the yi {i = 1. . .N}.
2. Use this estimate of a to obtain estimates of m and

the coefficients b of the explanatory variables, using the
iteratively weighted least squares algorithm and the model
expressed in GLM terms, with a log link function.
3. Use these estimates of m and b to solve the following

equation for a:

N=a�
XN
i¼1

yi � m� bTxi
	 


þ
XN
i¼1

yi � m� bTxi
� �

exp �a yi � m� bTxi
� �	 


¼ 0: ð8Þ

Equation (8) is the equation @loge L/@a = 0 yielding the
maximum likelihood estimate of the Gumbel scale para-
meter a.
4. With this new value of a, return to step 2 to calculate

revised estimates m̂; b̂. Iterate Steps 2 and 3 until
convergence.
[12] This computational procedure is illustrated in sec-

tion 5.

5. Numerical Example: Testing for Trend in Two
Annual Flood Series at Sites on the Rio Jacuı́,
Southern Brazil

[13] Table 1 shows the annual maximum floods (more
exactly, annual maximum mean daily discharges, with mean
daily discharge computed as the mean of two discharges
corresponding to gauge board readings at 0700 and 1900
hours) for two gauging sites, Espumoso and Passo Bela
Vista, on the Rio Jacuı́, in southern Brazil. Over the past
three decades, deforestation in the Jacuı́ drainage basin has
been extensive, with indigenous forest replaced by intensive
agriculture. Table 2 shows the convergence achieved by the
iteratively weighted least squares algorithm for the model
containing a single trend parameter as shown in equation (2).

For Espumoso, the fitted trend is m̂þ g=âð Þ þ b̂t = 484.72 +
5.96 t, giving a likelihood ratio criterion of c2 = 15.842 on
one degree of freedom; for Passo Bela Vista, the fitted trend
is 804.82 + 5.26 t, with c2 = 2.382 on one degree of
freedom. Tabulated values of c2 at the conventional 5%,
1% and 0.1% significance levels are 3.841, 6.635, and
10.827, respectively, showing highly significant time trend
at Espumoso, and no significant time trend at Passo Bela

Table 1. Annual Maximum Mean Daily Flows (‘‘Annual

Floods’’), 1940–1993, for Two Stations (Espumoso and Passo

Bela Vista) on the River Jacuı́, Southern Brazila

Year Espumoso Bela Vista

1940 * 900
1941 312 1678
1942 590 866
1943 248 455
1944 670 761
1945 365 510
1946 770 674
1947 465 548
1948 545 621
1949 315 415
1950 115 1495
1951 232 346
1952 260 354
1953 655 985
1954 675 1186
1955 455 680
1956 1020 1525
1957 700 785
1958 570 1062
1959 853 1074
1960 395 607
1961 926 1124
1962 99 132
1963 680 868
1964 121 615
1965 976 1068
1966 916 1062
1967 921 1225
1968 191 313
1969 187 278
1970 377 619
1971 128 1121
1972 582 1498
1973 744 1062
1974 710 1309
1975 520 674
1976 672 1017
1977 645 796
1978 655 692
1979 918 1202
1980 512 785
1981 255 391
1982 1126 1501
1983 1386 1933
1984 1394 1726
1985 600 796
1986 950 1239
1987 731 1009
1988 700 931
1989 1407 1593
1990 1284 1423
1991 165 293
1992 1496 1790
1993 809 905

aUnits are m3 s�1. Asterisk denotes missing value.
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Vista. Both fits are equal to those obtained using the New-
ton-Raphson procedure, but are achieved with fewer iter-
ations. Although iteration was necessary to solve the
equation (8) for a after each iteration for m and b, this
calculation usually converged at the second iteration.
[14] It is a straightforward calculation to estimate the

coefficients of additional explanatory variables. Suppose that
the significance of a quadratic trend component is required
for the Espumoso data, so that the explanatory variables are t
and t2. As with the more familiar multiple regression, we fit t
first, and then test whether further inclusion of the t2 variable
improves the fitted trend. It is found that the reduction in the
Deviance statistic due to inclusion of t2 is far from significant.
Since a log-link function is used, as explained above, the
fitted model is loge (m(zi)) = �1.40 + 0.011ti � 0.00055ti

2,
where m(zi) is the mean value of the transformed variable z =
exp(�ay) evaluated at t = ti. Step 2 of the above algorithm
converges to give a estimated as 0.0003176. Since m(zi) =
exp[�1.40 + 0.011ti � 0.00055ti

2] and m(zi) � exp
(�am(yi)), back-transformation gives the fitted model
E[Y |ti] = 409.19 � 3.23 t + 0.16 t2. Coefficients of
additional powers t3, t4. . . can be fitted if required. All
of this calculation is easily effected by standard statistical
software; results given in this paper were obtained using
the commercially available Genstat, but SAS, GLIM and
other programs can also be used. The inclusion of new
parameters in the vector b, and the omission from it of
others, is as straightforward as in multiple regression;
indeed in Genstat, the same two directives (MODEL and
FIT) can used either to fit GLMs, or to fit regressions.
[15] It is of interest to compare the estimates of b̂

obtained from the modified Gumbel model equation (2)
with the estimates b̂ obtained from linear regressions of
annual flood on year of occurrence at the two sites. These
are very different: for Espumoso and Passo Bela Vista
respectively, the values of b̂ are 10.63 ± 2.91 and 8.31 ±
3.65 m3 s�1 yr�1, statistically significant at the 0.1% and
5% levels respectively. However the coefficients of deter-
mination are both small: 19.1% and 7.3%. Using the
notation given by Douglas et al. [2000] for a Mann-
Kendall nonparametric test for trend, the test statistic Z,
whose distribution is well approximated by N(0, 1) for
these sample sizes, gave Z = 2.762 for Espumoso, sig-
nificant at the 1% level, and Z = 1.865 for Passo Bela
Vista, less than the value for significance at the 5% level.

5.1. Extension of the Method to Test for Trend in the
Gumbel Scale Parameter A

[16] If the GLM fit shows that some or all of the trend
parameters b are statistically significant, this is sufficient to

demonstrate that the usual analytical procedures (estimation
of floods with return period T years; or calculation of IDF
curves in the case of rainfall intensity) are no longer valid,
and that other methods are required to explore frequencies of
occurrence, because past behavior is then at best an unreliable
guide to future behavior. However a question arises concern-
ing whether it is possible to test for time trend in the Gumbel
scale parameter a as well as in the Gumbel mean. Provided
that a particular form for the trend in a can be specified (such
as replacing the a in equation (2) by a0 + a1t, with the
parameters a0, a1 to be estimated) it is straightforward in
principle to extend the GLM fitting procedure to estimate a0

and a1. Step 1 of the computation proposed above would set
the initial value of a0 to p= ~s

ffiffiffi
6

p� �
, where ~s is the standard

deviation of the yi{i = 1. . .N}; the initial value ofa1 would be
set to zero. Step 2 would proceed in the usual way to give
estimates ofm and b, but at step 3 two equations now need to
be solved iteratively: namely the maximum likelihood equa-
tions @logeL/@a0 = 0 and @logeL/@a1 = 0. The estimates ofa0

anda1 are then used to calculate the time variationa0 +a1t in
the scale parameter, and hence the new variable zi = =
�exp(�[a0 + a1ti] yi) for entry into the GLM procedure.
Further work is necessary to establish whether, and under
what conditions, this procedure would fail to converge.

5.2. Graphical Validation of the Gumbel Hypothesis

[17] Where the Gumbel distribution with time-variant
mean has been taken as an initial working hypothesis,
validation of this hypothesis can be achieved by analysis
of the residuals about a fitted trend line. In the notation used
earlier in this paper, the residuals are yi � fi, where fi
are fitted values. These are placed in ascending order to
give y(i) � f(i), i = 1, 2 . . . N. If these follow a Gumbel
distribution they should show high correlation with the N
quantiles Qi from the standard Gumbel distribution F(u) =
exp(�exp(�u)). A plot of the Qi against the ordered resid-
uals y(i) � f(i) should then appear as a straight line (a ‘‘Q-Q
plot’’). Figures 1 and 2 show histograms of the residuals, and
Q-Q plots for the annual flood data from Espumoso and
Passo Bela Vista. The N quantiles from the standard Gumbel
distribution were calculated using the Hazen formula, and
found by solving the relation F(ui) = (i � 0.5)/N for the ui
which are plotted on the vertical axis of the Q-Q plots in
Figures 1 and 2. Other choices of the ui are also possible
[Stedinger et al., 1993, Table 18.3.1]. The figures show Q-Q
plots that are linear over much of the range of residuals, with
some notable discrepancies among the larger ones. However,
the two largest residuals 808.8 and 810.8 at Espumoso,
where significant trend was detected, occurred in the two
years 1983 and 1984, a period of very strong El Niño
conditions as Table 1 shows.

6. Computational Considerations

[18] The question can be asked ‘‘why go to the trouble of
testing for the existence of trend by casting the problem in
the form of a GLM, and using the IWLS algorithm, instead of
using a Newton-Raphson procedure to locate the likelihood
maximum directly?’’ The short answer to this question is the
Newton-Raphson procedure often fails, particularly when
several trend (or other) parameters b are to be estimated. To
illustrate what happens, 50 simulated samples {y}, each of
length N = 50, were drawn from a standard Gumbel distri-

Table 2. Annual Flood Data for Espumoso and Passo Bela Vista:

Convergence Achieved by the Iteratively Weighted Least Squares

Algorithm

Iteration

Espumoso Passo Bela Vista

â m̂ b̂ â m̂ b̂

1 0.003419 314.17 5.7819 0.002715 581.64 4.9402
2 0.003403 315.20 5.9314 0.002690 588.81 5.2231
3 0.003401 315.33 5.9494 0.002687 589.57 5.2528
4 0.003401 315.35 5.9516 0.002687 589.66 5.2562
ML 0.003401 315 5.96 0.002687 590 5.26
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bution withm = 0, a = 1; each simulated sample was taken as
a set of observations of a dependent variable, and five
independent variables x1, x2, x3, x4, x5, all correlated with
the {y}, were constructed by adding uniformly distributed
(0, 1) ‘‘errors’’ to the set {y}. Thus the ‘‘dependent’’ variable
Y was taken to have the distribution fY (y) = a exp [�a(y �
m � b1x1 � b2x2 � b3x3 � b4x4 � b5x5) �exp{�a(y � m �
b1x1 � b2x2 � b3x3 � b4x4 � b5x5}] so that seven parameters
{a, m, b1, b2, b3, b4, b5} were to be estimated. When these
were estimated by Newton-Raphson, three samples of the 50
generated had failed to converge by 30 iterations, at which
point the calculation was terminated; 5 samples required
more than 20 iterations to converge; 4 samples between 11
and 20 iterations; and 38 samples converged after a number
of iterations ranging from 6 (the smallest number) to 10.
When the 7 parameters were estimated using the IWLS
algorithm, with samples generated from the same seed value,
the same starting values (all b values equal to zero;m,a equal
to their moment estimators) and using the same convergence
criteria, convergence was never a problem and was always
rapid; 45 samples gave convergence after four iterations, the
remainder after three. These results refer to 50 samples of size
50; when 50 samples of size 20 were generated, the superi-

ority of the IWLS was even more apparent. The Newton-
Raphson calculation frequently aborted (because of singu-
larity of the matrix of second derivatives of logeL) and where
it did not, many samples showed no convergence by 30
iterations. Using the IWLS algorithm, all 50 samples gave
convergence, the number of samples giving convergence
after 3, 4 and 5 iterations being 4, 43, and 3. While failure to
converge is sometimes encountered when GLMs are fitted
by using the IWLS algorithm, it is much less frequent than
with Newton-Raphson optimization. Using IWLS, computa-
tional difficulties were very occasionally encountered when
simulating 200 samples of size N = 25, although never with
N = 50 or N = 75.
[19] It is therefore clear that, because the IWLS algo-

rithm exploits the joint linearity of the six parameters {m,
b1, b2, b3, b4, b5}in this example, there is much to be
gained by its use. The same is true wherever the trend is of
form bTx with coefficients occurring linearly. There are also
further advantages to be gained. Observations giving large
residuals, or having high leverage, are readily identified;
tests of significance (for example, a test of the hypothesis
b1 = b2 = b3 = b4 = b5 = 0 in the example, or that any subset
of the b values is zero) are immediate, without the labor of

Figure 1. Histogram of Espumoso residuals and Q-Q plot for consistency with the Gumbel hypothesis.
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rerunning a Newton-Raphson calculation for the modified
model.

7. Comparison of Trends Estimated by Fitting
GLMs With Trends Estimated by Regression

[20] The question can also be asked ‘‘Why go to the
trouble of fitting a GLM where a trend is suspected, instead
of simply fitting a trend-line by ordinary linear regression?’’
One answer, that of logical inconsistency, has already been
given. To answer the question further, 200 samples each of
two different sizes (N = 25; N = 50) were drawn from a
(standard) Gumbel distribution with known parameters
(m = 0; a = 1) and linear trends of known magnitude
were superimposed on the sample. In the absence of any
trend, the variance of the standard Gumbel distribution is s2

= p2/6, so that the standard deviation is s = 1.2825
approximately; the three positive trends used in the
simulation were 0.5s, s, and 2s, distributed over the
length N of artificial record. Thus for N = 50 and s =
1.2825, a linear trend with a single trend coefficient b =
0.02565 was superimposed on the 50 values from the

standard Gumbel distribution (50 � 0.02565 = 1.2825).
The three trends b = 0.01282, b = 0.02565 and b = 0.0513
corresponding to 0.5s, s and 2s, were therefore in
increasing order of magnitude (but differed for the two
cases N = 50 and N = 75 because the latter ‘‘record’’ is
longer). Having generated samples with these character-
istics, the coefficients of linear trend b were estimated (1)
by the GLM procedure described in this paper and (2) by
linear regression (LR). The results are shown in Table 3.
[21] While the means of the b values, calculated from the

200 simulated samples, are not far from their true values for
both the GLM and LR models, the variances of the 200 b
values are substantially different for the two models, the
variances of the LR trend parameters being always greater
than those given by the GLM procedure. Thus the proba-
bilities P[b̂ > 0|H1], where H1 is the hypothesis that linear
trend exists, will be greater for the GLM model than for the
LR model.
[22] The next section explores how this last statement can

be extended to calculate probabilities in the critical region of
a significance test of the hypothesis of zero trend, and hence
leads to a conclusion regarding the relative powers of LR

Figure 2. Histogram of Passo Bela Vista residuals and Q-Q plot for consistency with the Gumbel
hypothesis.
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and GLM for detecting linear trend, in the particular case
where data are simulated from the Gumbel distribution with
m = 0, a = 1.

8. Comparison of the Power of Testing for Linear
Trend by Linear Regression and GLM Procedure:
Data Generated From Gumbel Distributions With
m = 0, A = 1, and known values of B

[23] To compare the power of the test for linear trend (1)
using linear regression (LR) and (2) using the GLM fitting
procedure described in this paper, it is first necessary to
define an appropriate critical region. For this purpose, the null
hypothesis H0: b = 0 and the unilateral alternative hypothesis
H1: b > 0 were taken, together with a significance probability
for the test equal to 5%. To define the critical region
appropriate for this test, the distributions of ~b (the slope of
a fitted LR) and of b̂ (the slope estimated by the GLM
procedure) were obtained by simulation, using 200 samples
of sizes N = 50 and N = 75 generated from the standard
Gumbel distribution in which m = 0, a = 1. Figure 3 shows
the histograms of ~b and b̂, under the hypothesis H0 of trend
absent, b = 0; with linear trend present, the histograms are of
similar form.
[24] The critical region for the two tests LR, GLM were

obtained by calculating the 95% quantiles of these histo-
grams; thus for sample size N = 50, the critical region for
LR was ~b > 0.01956 and the critical region for GLM was
b̂ > 0.01707. Thus a proportion 5% of the 200 samples were
greater than these values, even though the samples were
generated from a trend-free distribution. This gave the type
1 error for the tests equal to 0.05.

[25] The next step was to draw samples of sizes N = 50 and
N = 75 from Gumbel distributions with m = 0, a = 1, and
various positive values of b, assumed known. The sample
sizes 50 and 75 were chosen because pathological samples
for which the GLM estimation procedure encountered
numerical problems were very unlikely to occur (unlike the
case N = 25, where numerical problems, although infrequent,
occasionally occurred). For each known value of b, 200
samples were drawn from a Gumbel distribution with m = 0,
a = 1, and the appropriate b value giving the trend. From the
histograms of the 200 values of ~b (for LR) and b̂ (for GLM),
the proportions of the 200 samples lying in the relevant
critical regions were determined, these proportions giving the
powers of the LR and GLM tests of the null hypothesis H0:
b = 0 against the one-sided alternative H1: b > 0. These
proportions were equal to 1 minus the type 2 error for the
tests. The results are given in Table 4, which shows that the
power of the GLM test is greater than the power of the LR
test, by a useful margin, the gain in power being greater when
the true value b of the trend is not very different from zero.
The conclusion is that when data are Gumbel-distributed,
testing for trend by the GLM procedure is more sensitive than
LR to small departures from the null hypothesis of zero trend;
but if the trend is very large, it does not matter which test is
used (and, indeed, no formal significance may be required).

9. Discussion

[26] This paper has shown how the very powerful tools of
GLM theory can be adapted to test for trend in hydrological
variables for which observations consist of their annual
maximum values, whether for mean daily discharge, or for
rainfall intensity, which as a working hypothesis can be
taken to follow a Gumbel distribution with mean that varies
over time. If the increases in extreme rainfall and severity of
floods come to pass that are predicted as the consequences
of climate change, procedures for testing whether and where
such changes are occurring will be of great importance.
[27] Whether or not time trends exist, fitting procedures

based on GLM theory have wider uses for identifying the
relationships between Gumbel-distributed variables, and
concomitant variables with which they may be correlated.
The example suggested is that GLM procedures could be
used to explore how maximum rainfall intensity is related to
weather conditions pertaining at the time that the maximum
intensities were observed.
[28] An important aspect of GLM theory is the require-

ment that the variable to be analyzed has a distribution
belonging to the exponential family as defined earlier in this
paper. Thus GLM procedures can be used to relate data
from binomial, Poisson, Normal, gamma and inverse Gaus-
sian distributions to explanatory variables, since these dis-
tributions all belong to the exponential family. However the
Gumbel distribution does not belong to the exponential
family unless its scale parameter is known, so that some
ingenuity is required before the power of GLM procedures
can be fully exploited in the analysis of Gumbel variates,
and for testing hypotheses about their relation to concom-
itant variables. The paper shows how this can be achieved
by what is in effect a two-stage iterative procedure: a first
estimate of the scale parameter a is taken, and the remain-
ing parameters m and b (the latter being a vector of trend
parameters, or the vector of coefficients of explanatory

Table 3. Comparison Between Means and Variances of Linear

Trend Coefficients b, Calculated by Fitting a GLM to 200

Simulated Samples of Sizes N = 25, 50, and 75 and Means and

Variances of Linear Trend Coefficients b, Calculated by Simple

Linear Regressions Fitted to the Same 200 Samplesa

GLM fitted: Linear regression
fitted:

var[LR]/var[GLM]

Means of estimated b values.
N = 25, b = 0.02565 0.0228 0.0258
N = 25, b = 0.05130 0.0498 0.0531
N = 25, b = 0.1026 0.1019 0.1020
N = 50, b = 0.01282 0.0142 0.0136
N = 50, b = 0.02565 0.0262 0.0253
N = 50, b = 0.05130 0.0512 0.0504
N = 75, b = 0.00855 0.0086 0.0085
N = 75, b = 0.01710 0.0163 0.0164
N = 75, b = 0.03420 0.0341 0.0341

Variances of estimated b values (� 104)
N = 25, b = 0.02565 6.8512 10.6755 1.56
N = 25, b = 0.05130 8.6944 18.1912 2.09
N = 25, b = 0.1026 6.9741 9.3634 1.34
N = 50, b = 0.01282 0.8968 1.7144 1.91
N = 50, b = 0.02565 0.9218 1.3429 1.45
N = 50, b = 0.05130 0.8952 1.6691 1.86
N = 75, b = 0.00855 0.3558 0.5488 1.54
N = 75, b = 0.01710 0.2894 0.4033 1.39
N = 75, b = 0.03420 0.3043 0.5072 1.66

aData were sampled from a standard Gumbel distribution (m = 0; a = 1)
with added linear trends of magnitude 0.5s, s, and 2s as explained in the
text.
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variables) are estimated. With these estimates of m and b,
the maximum likelihood equation @logeL/@a = 0 is solved
iteratively to give an updated a, from which new values of
m and b are obtained, the cycle continuing until conver-
gence. In the examples presented in this paper, convergence
was extremely rapid. The key to the procedure is to assume
certain parameters known so that the distribution of the data
becomes a member of the exponential family; and since this
procedure is quite general, one may speculate that other
distributions used in hydrological practice (such as the
Weibull, and 3-parameter gamma) can be treated similarly.
[29] A fairly straightforward extension of the proposed

procedure is suggested for testing whether time trends exist
in the Gumbel scale parameter a as well as in the Gumbel
mean value, but further work is required to explore the
convergence properties of this extension. However this
paper argues that exploring trends in a is likely to be of
secondary interest compared to trends in mean value,
because existence of a time trend in the Gumbel mean
immediately eliminates the possibility of any analysis based
on the assumption of stationary data sequences (such as the
calculation of floods with return period T years; or in the

case of rainfall intensity data, the calculation of IDF curves).
A significant trend in the Gumbel mean shows that more
complex methods, using strong assumptions about the
future development of the causes of the trend, are required

Figure 3. (left) Histograms of 200 linear regression (LR) estimates ~b of linear trend parameter b
superimposed on simulated data from a standard Gumbel distribution for sample sizes N = 50 and N = 75
and (right) histograms of 200 GLM estimates b̂ for same sample sizes. Horizontal scales differ.

Table 4. Powers of the LR and GLM Tests for Linear Trend for

Two Sample Sizes N = 50 and N = 75 Calculated From Simulated

Samples From a Gumbel Distribution With m = 0, a = 1 and the

Values of b Indicateda

LR GLM Ratio, GLM/LR

N = 50
b = 0 0.050 0.050
b = 0.012825 0.285 0.345 1.21
b = 0.02565 0.685 0.800 1.17
b = 0.0513 1.000 1.000 1

N = 75
b = 0 0.050 0.050
b = 00855 0.380 0.480 1.26
b = 0.0171 0.860 0.940 1.09
b = 0.0342 1.000 1.000

aValues of b are justified in the text.
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if the magnitudes and frequencies of future annual extremes
are to be estimated. Whether trends also exist in the Gumbel
scale parameter is then of minor interest.
[30] The paper has dealt with the analysis of a single

record at one site. In the case of both flood and rainfall
intensity data, the hydrologic reality is that records of
variable length are available at several sites, and that these
are cross-correlated (the correlation between annual max-
imum mean daily flows at Espumoso and Passo Bela Vista
on the Rio Jacuı́ is evident from inspection of Table 1).
Work by Douglas et al. [2000] has shown how essential it
is to take full account of this correlation when analyzing
hydrologic data for the possible existence of time trends.
In their analysis of flood records from the Midwest United
States, no time trends were detected when spatial correla-
tion was allowed for; but if spatial correlation between
records had been neglected, two thirds of the sites ana-
lyzed would have shown statistically significant trends.
The obvious question therefore is whether the GLM
procedure for testing the existence of trend in Gumbel-
distributed data can be further extended to incorporate
cross-correlation between flood records at different sites.
This is a question for future research. However there are
hopeful signs that it may be possible. Clarke [2001] used
GLM procedures to analyze annual flood data in records
of variable length and from several sites, assuming that the
data were gamma-distributed, with the mean flood in year
i at gauge site j expressed in terms of year and site effects
ai, sj by means of the link-function loge mij = m + ai + sj,
the component ai building in a correlation between annual
maximum floods recorded in the same year. One may
speculate that a similar device might prove useful in the
analysis of multisite, Gumbel-distributed data. An obvious
difficulty is that the Gumbel scale parameter is likely to
vary from site to site, but here GLM theory may give
some assistance. Expression (4), giving the general form
of the exponential family, includes the function a(f). This
scaling function is commonly of the form a(f) = f/w
[McCullagh and Nelder, 1989] where w is a known prior
weight function that varies from observation to observa-
tion. In the present context, it may be sufficient to allow w
to vary only from site to site, perhaps as a function of
drainage basin area, w = f (A). Clearly much more work is
required to substantiate such conjectures, or to prove them
worthless.
[31] The benefits of casting the trend-detection problem

in the form of a GLM are not merely the benefits of
computational efficiency and convenience. The simulations
described in the paper, using random samples drawn from
the standard form of the Gumbel distribution with super-
imposed linear trends of known magnitude, gave estimates
of the trend parameter b by two methods: first, using the
GLM procedure explored in the paper, and second, using
simple linear regression LR, ignoring the fact that the data
have Gumbel properties. Although neither method showed
evidence of bias (in terms of deviation from the known
value of the trend parameter), the variances of the GLM
estimates were always less than the variances of the LR
estimates. Translated into terms of the relative power of
the two tests, it was shown that when data can be expected
to have come from a Gumbel distribution in which a
positive linear trend may also be present, the GLM

procedure is better able to detect slight departures from
the null hypothesis (H0: b = 0, trend absent) than simple
linear regression.

10. Conclusion

[32] This paper has shown how Gumbel-distributed data
can be related to explanatory variables by using General-
ized Linear Models fitted by using a modified form of the
iteratively weighted least squares algorithm. Typical appli-
cations include (1) testing for trend in annual flood data;
(2) testing for trend in annual maximum rainfall intensities
of different durations, two applications that are relevant in
conditions of changing hydrologic regime. Even where
trend is absent, the proposed procedure can be used to
explore the relation between (say) the observations in a
stationary sequence of annual maximum rainfall inten-
sities, and weather variables at the times that the maxima
were recorded (such as wind direction, wind velocity).
When the Gumbel scale parameter is known, coefficients b
of explanatory variables x can be estimated by casting the
model in GLM form, and the scale parameter is updated
by solution of the maximum likelihood equation for the
scale parameter a. The method allows the coefficients of
explanatory variables to be estimated rapidly, using com-
putationally efficient methods that take advantage of the
linear structure of the parameters m and b in the Gumbel
model. Unlike other trend tests (linear regression; or the
nonparametric Mann-Kendall) it also utilizes the informa-
tion that, in the absence of trend, annual floods and annual
maximum rainfall intensities can be assumed, as a working
hypothesis until disproved, to follow a Gumbel distribu-
tion. Computer simulations also showed that, where data
have an underlying Gumbel distribution with superim-
posed linear trend, estimating the trend by means of the
GLM procedure is not only more efficient computationally
than maximizing the likelihood function by a Newton-
Raphson procedure, but also has greater power than linear
regression to detect slight departures from the null hypoth-
esis that no trend exists.
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